Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Solomon G. Nergadze is active.

Publication


Featured researches published by Solomon G. Nergadze.


Science | 2009

Genome Sequence, Comparative Analysis, and Population Genetics of the Domestic Horse

Claire M. Wade; Elena Giulotto; Snaevar Sigurdsson; Monica Zoli; Sante Gnerre; Freyja Imsland; Teri L. Lear; David L. Adelson; Ernest Bailey; Rebecca R. Bellone; Helmut Blöcker; Ottmar Distl; R.C. Edgar; Manuel Garber; Tosso Leeb; Evan Mauceli; James N. MacLeod; M.C.T. Penedo; Joy M. Raison; Ted Sharpe; J. Vogel; Leif Andersson; Douglas F. Antczak; Tara Biagi; M. M. Binns; B.P. Chowdhary; S.J. Coleman; G. Della Valle; Sarah Fryc; Gérard Guérin

A Horse Is a Horse, of Course The history of horse domestication is closely tied to the history of the human society. Wade et al. (p. 865) report on the sequencing and provide a single nucleotide polymorphism map of the horse (Equus caballus) genome. Horses are a member of the order perissodactyla (odd-toed animals with hooves). The analysis reveals an evolutionarily new centromere on equine chromosome 11 that displays properties of an immature but fully functioning centromere and is devoid of centromeric satellite sequence. The findings clarify the nature of genetic diversity within and across horse breeds and suggest that the horse was domesticated from a relatively large number of females, but few males. The horse genome reveals an evolutionary new centromere and conserved chromosomal sequences relative to other mammals. We report a high-quality draft sequence of the genome of the horse (Equus caballus). The genome is relatively repetitive but has little segmental duplication. Chromosomes appear to have undergone few historical rearrangements: 53% of equine chromosomes show conserved synteny to a single human chromosome. Equine chromosome 11 is shown to have an evolutionary new centromere devoid of centromeric satellite DNA, suggesting that centromeric function may arise before satellite repeat accumulation. Linkage disequilibrium, showing the influences of early domestication of large herds of female horses, is intermediate in length between dog and human, and there is long-range haplotype sharing among breeds.


Cytogenetic and Genome Research | 2008

Telomeric repeats far from the ends: mechanisms of origin and role in evolution.

Aurora Ruiz-Herrera; Solomon G. Nergadze; Marco Santagostino; Elena Giulotto

In addition to their location at terminal positions, telomeric-like repeats are also present at internal sites of the chromosomes (intrachromosomal or interstitial telomeric sequences, ITSs). According to their sequence organization and genomic location, two different kinds of ITSs can be identified: (1) heterochromatic ITSs (het-ITSs), large (up to hundreds of kb) stretches of telomeric-like DNA localized mainly at centromeres, and (2) short ITSs (s-ITSs), short stretches of telomeric hexamers distributed at internal sites of the chromosomes. Het-ITSs have been only described in some vertebrate species and they probably represent the remnants of evolutionary chromosomal rearrangements. On the contrary, s-ITSs are probably present in all mammalian genomes although they have been described in detail only in some completely sequenced genomes. Sequence database analysis revealed the presence of 83, 79, 244 and 250 such s-ITSs in the human, chimpanzee, mouse and rat genomes, respectively. Analysis of the flanking sequences suggested that s-ITSs were inserted during the repair of DNA double-strand breaks that occurred in the course of evolution. An extensive comparative analysis of the s-ITS loci and their orthologous ‘empty’ loci confirmed this hypothesis and suggested that the repair event involved the direct action of telomerase. Whereas het-ITSs seem to be intrinsically prone to breakage, the instability of s-ITSs is more controversial. This observation is consistent with the hypothesis that s-ITSs are probably not themselves prone to breakage but represent ‘scars’ of ancient breakage that may have occurred within fragile regions. This study will review the current knowledge on these two types of ITS, their molecular organization, how they arose during evolution, their implications for chromosomal instability and their potential applications as phylogenetic/forensic markers.


RNA | 2009

CpG-island promoters drive transcription of human telomeres

Solomon G. Nergadze; Benjamin O. Farnung; Harry Wischnewski; Lela Khoriauli; Valerio Vitelli; Raghav Chawla; Elena Giulotto; Claus M. Azzalin

The longstanding dogma that telomeres, the heterochromatic extremities of linear eukaryotic chromosomes, are transcriptionally silent was overturned by the discovery that DNA-dependent RNA polymerase II (RNAPII) transcribes telomeric DNA into telomeric repeat-containing RNA (TERRA). Here, we show that CpG dinucleotide-rich DNA islands, shared among multiple human chromosome ends, promote transcription of TERRA molecules. TERRA promoters sustain cellular expression of reporter genes, are located immediately upstream of TERRA transcription start sites, and are bound by active RNAPII in vivo. Finally, the identified promoter CpG dinucleotides are methylated in vivo, and cytosine methylation negatively regulates TERRA abundance. The existence of subtelomeric promoters, driving TERRA transcription from independent chromosome ends, supports the idea that TERRA exerts fundamental functions in the context of telomere biology.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Mitochondrial genomes from modern horses reveal the major haplogroups that underwent domestication

Alessandro Achilli; Anna Olivieri; Pedro Soares; Hovirag Lancioni; Baharak Hooshiar Kashani; Ugo A. Perego; Solomon G. Nergadze; Valeria Carossa; Marco Santagostino; Stefano Capomaccio; Michela Felicetti; Walid Al-Achkar; M. Cecilia T. Penedo; Andrea Verini-Supplizi; Massoud Houshmand; Scott R. Woodward; Ornella Semino; Maurizio Silvestrelli; Elena Giulotto; Luísa Pereira; Hans-Jürgen Bandelt; Antonio Torroni

Archaeological and genetic evidence concerning the time and mode of wild horse (Equus ferus) domestication is still debated. High levels of genetic diversity in horse mtDNA have been detected when analyzing the control region; recurrent mutations, however, tend to blur the structure of the phylogenetic tree. Here, we brought the horse mtDNA phylogeny to the highest level of molecular resolution by analyzing 83 mitochondrial genomes from modern horses across Asia, Europe, the Middle East, and the Americas. Our data reveal 18 major haplogroups (A–R) with radiation times that are mostly confined to the Neolithic and later periods and place the root of the phylogeny corresponding to the Ancestral Mare Mitogenome at ∼130–160 thousand years ago. All haplogroups were detected in modern horses from Asia, but F was only found in E. przewalskii—the only remaining wild horse. Therefore, a wide range of matrilineal lineages from the extinct E. ferus underwent domestication in the Eurasian steppes during the Eneolithic period and were transmitted to modern E. caballus breeds. Importantly, now that the major horse haplogroups have been defined, each with diagnostic mutational motifs (in both the coding and control regions), these haplotypes could be easily used to (i) classify well-preserved ancient remains, (ii) (re)assess the haplogroup variation of modern breeds, including Thoroughbreds, and (iii) evaluate the possible role of mtDNA backgrounds in racehorse performance.


Genome Biology | 2007

Contribution of telomerase RNA retrotranscription to DNA double-strand break repair during mammalian genome evolution

Solomon G. Nergadze; Marco Santagostino; Alberto Salzano; Chiara Mondello; Elena Giulotto

BackgroundIn vertebrates, tandem arrays of TTAGGG hexamers are present at both telomeres and intrachromosomal sites (interstitial telomeric sequences (ITSs)). We previously showed that, in primates, ITSs were inserted during the repair of DNA double-strand breaks and proposed that they could arise from either the capture of telomeric fragments or the action of telomerase.ResultsAn extensive comparative analysis of two primate (Homo sapiens and Pan troglodytes) and two rodent (Mus musculus and Rattus norvegicus) genomes allowed us to describe organization and insertion mechanisms of all the informative ITSs present in the four species. Two novel observations support the hypothesis of telomerase involvement in ITS insertion: in a highly significant fraction of informative loci, the ITSs were introduced at break sites where a few nucleotides homologous to the telomeric hexamer were exposed; in the rodent genomes, complex ITS loci are present in which a retrotranscribed fragment of the telomerase RNA, far away from the canonical template, was inserted together with the telomeric repeats. Moreover, mutational analysis of the TTAGGG arrays in the different species suggests that they were inserted as exact telomeric hexamers, further supporting the participation of telomerase in ITS formation.ConclusionThese results strongly suggest that telomerase was utilized, in some instances, for the repair of DNA double-strand breaks occurring in the genomes of rodents and primates during evolution. The presence, in the rodent genomes, of sequences retrotranscribed from the telomerase RNA strengthens the hypothesis of the origin of telomerase from an ancient retrotransposon.


PLOS Genetics | 2010

Uncoupling of Satellite DNA and Centromeric Function in the Genus Equus

Francesca M. Piras; Solomon G. Nergadze; Elisa Magnani; Livia Bertoni; Carmen Attolini; Lela Khoriauli; Elena Raimondi; Elena Giulotto

In a previous study, we showed that centromere repositioning, that is the shift along the chromosome of the centromeric function without DNA sequence rearrangement, has occurred frequently during the evolution of the genus Equus. In this work, the analysis of the chromosomal distribution of satellite tandem repeats in Equus caballus, E. asinus, E. grevyi, and E. burchelli highlighted two atypical features: 1) several centromeres, including the previously described evolutionary new centromeres (ENCs), seem to be devoid of satellite DNA, and 2) satellite repeats are often present at non-centromeric termini, probably corresponding to relics of ancestral now inactive centromeres. Immuno-FISH experiments using satellite DNA and antibodies against the kinetochore protein CENP-A demonstrated that satellite-less primary constrictions are actually endowed with centromeric function. The phylogenetic reconstruction of centromere repositioning events demonstrates that the acquisition of satellite DNA occurs after the formation of the centromere during evolution and that centromeres can function over millions of years and many generations without detectable satellite DNA. The rapidly evolving Equus species gave us the opportunity to identify different intermediate steps along the full maturation of ENCs.


Animal Genetics | 2010

Mitochondrial DNA insertions in the nuclear horse genome

Solomon G. Nergadze; M. Lupotto; P. Pellanda; Marco Santagostino; Valerio Vitelli; Elena Giulotto

The insertion of mitochondrial DNA in the nuclear genome generates numts, nuclear sequences of mitochondrial origin. In the horse reference genome, we identified 82 numts and showed that the entire horse mitochondrial DNA is represented as numts without gross bias. Numts were inserted in the horse nuclear genome at random sites and were probably generated during the repair of DNA double-strand breaks. We then analysed 12 numt loci in 20 unrelated horses and found that null alleles, lacking the mitochondrial DNA insertion, were present at six of these loci. At some loci, the null allele is prevalent in the sample analysed, suggesting that, in the horse population, the number of numt loci may be higher than 82 present in the reference genome. Contrary to humans, the insertion polymorphism of numts is extremely frequent in the horse population, supporting the hypothesis that the genome of this species is in a rapidly evolving state.


Cytogenetic and Genome Research | 2009

Phylogeny of horse chromosome 5q in the genus Equus and centromere repositioning

Francesca M. Piras; Solomon G. Nergadze; V. Poletto; Federico Cerutti; Oliver A. Ryder; Tosso Leeb; Elena Raimondi; Elena Giulotto

Horses, asses and zebras belong to the genus Equus and are the only extant species of the family Equidae in the order Perissodactyla. In a previous work we demonstrated that a key factor in the rapid karyotypic evolution of this genus was evolutionary centromere repositioning, that is, the shift of the centromeric function to a new position without alteration of the order of markers along the chromosome. In search of previously undiscovered evolutionarily new centromeres, we traced the phylogeny of horse chromosome 5, analyzing the order of BAC markers, derived from a horse genomic library, in 7 Equus species (E. caballus, E. hemionus onager, E. kiang, E. asinus, E. grevyi, E. burchelli and E. zebra hartmannae). This analysis showed that repositioned centromeres are present in E. asinus (domestic donkey, EAS) chromosome 16 and in E. burchelli (Burchell’s zebra, EBU) chromosome 17, confirming that centromere repositioning is a strikingly frequent phenomenon in this genus. The observation that the neocentromeres in EAS16 and EBU17 are in the same chromosomal position suggests that they may derive from the same event and therefore, E. asinus and E. burchelli may be more closely related than previously proposed; alternatively, 2 centromere repositioning events, involving the same chromosomal region, may have occurred independently in different lineages, pointing to the possible existence of hot spots for neocentromere formation. Our comparative analysis also showed that, while E. caballus chromosome 5 seems to represent the ancestral configuration, centric fission followed by independent fusion events gave rise to 3 different submetacentric chromosomes in other Equus lineages.


Frontiers in Oncology | 2013

TERRA Expression Levels Do Not Correlate with Telomere Length and Radiation Sensitivity in Human Cancer Cell Lines

Alexandra Smirnova; Riccardo Gamba; Lela Khoriauli; Valerio Vitelli; Solomon G. Nergadze; Elena Giulotto

Mammalian telomeres are transcribed into long non-coding telomeric repeat-containing RNA (TERRA) molecules that seem to play a role in the maintenance of telomere stability. In human cells, CpG-island promoters drive TERRA transcription and are regulated by methylation. It was suggested that the amount of TERRA may be related to telomere length. To test this hypothesis we measured telomere length and TERRA levels in single clones isolated from five human cell lines: HeLa (cervical carcinoma), BRC-230 (breast cancer), AKG and GK2 (gastric cancers), and GM847 (SV40 immortalized skin fibroblasts). However, these two parameters did not correlate with each other. Moreover, cell survival to γ-rays did not show a significant variation among the clones, suggesting that, in this cellular system, the intra-population variability in telomere length and TERRA levels does not influence sensitivity to ionizing radiation. This conclusion was supported by the observation that in a cell line in which telomeres were greatly elongated by the ectopic expression of telomerase, TERRA expression levels and radiation sensitivity were similar to the parental HeLa cell line.


PLOS ONE | 2015

Early-Life Telomere Dynamics Differ between the Sexes and Predict Growth in the Barn Swallow (Hirundo rustica)

Marco Parolini; Andrea Romano; Lela Khoriauli; Solomon G. Nergadze; Manuela Caprioli; Diego Rubolini; Marco Santagostino; Nicola Saino; Elena Giulotto

Telomeres are conserved DNA-protein structures at the termini of eukaryotic chromosomes which contribute to maintenance of genome integrity, and their shortening leads to cell senescence, with negative consequences for organismal functions. Because telomere erosion is influenced by extrinsic and endogenous factors, telomere dynamics may provide a mechanistic basis for evolutionary and physiological trade-offs. Yet, knowledge of fundamental aspects of telomere biology under natural selection regimes, including sex- and context-dependent variation in early-life, and the covariation between telomere dynamics and growth, is scant. In this study of barn swallows (Hirundo rustica) we investigated the sex-dependent telomere erosion during nestling period, and the covariation between relative telomere length and body and plumage growth. Finally, we tested whether any covariation between growth traits and relative telomere length depends on the social environment, as influenced by sibling sex ratio. Relative telomere length declined on average over the period of nestling maximal growth rate (between 7 and 16 days of age) and differently covaried with initial relative telomere length in either sex. The frequency distribution of changes in relative telomere length was bimodal, with most nestlings decreasing and some increasing relative telomere length, but none of the offspring traits predicted the a posteriori identified group to which individual nestlings belonged. Tail and wing length increased with relative telomere length, but more steeply in males than females, and this relationship held both at the within- and among-broods levels. Moreover, the increase in plumage phenotypic values was steeper when the sex ratio of an individual’s siblings was female-biased. Our study provides evidence for telomere shortening during early life according to subtly different dynamics in either sex. Furthermore, it shows that the positive covariation between growth and relative telomere length depends on sex as well as social environment, in terms of sibling sex ratio.

Collaboration


Dive into the Solomon G. Nergadze's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge