Somdatta Ghosh Dey
Indian Association for the Cultivation of Science
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Somdatta Ghosh Dey.
Inorganic Chemistry | 2013
Biswajit Mondal; Kushal Sengupta; Atanu Rana; Atif Mahammed; Mark Botoshansky; Somdatta Ghosh Dey; Zeev Gross; Abhishek Dey
The feasibility of a hydrogen-based economy relies very much on the availability of catalysts for the hydrogen evolution reaction (HER) that are not based on Pt or other noble elements. Significant breakthroughs have been achieved with certain first row transition metal complexes in terms of low overpotentials and large turnover rates, but the majority of reported work utilized purified and deoxygenated solvents (most commonly mixtures of organic solvents/acids). Realizing that the design of earth abundant metal catalysts that operate under truly ambient conditions remains an unresolved challenge, we have now developed an electronically tuned Co(III) corrole that can catalyze the HER from aqueous sulfuric acid at as low as -0.3 V vs NHE, with a turnover frequency of 600 s(-1) and ≫10(7) catalytic turnovers. Under aerobic conditions, using H2O from naturally available sources without any pretreatment, the same complex catalyzes the reduction of H(+) with a Faradaic Yield (FY) of 52%. Density functional theory (DFT) calculations indicate that the electron density on a putative hydride species is delocalized off from the H atom into the macrocycle. This makes the protonation of a [Co(III)-H](-) species the rate determining step (rds) for the HER consistent with the experimental data.
Journal of the American Chemical Society | 2011
Debajyoti Pramanik; Chandradeep Ghosh; Somdatta Ghosh Dey
Recently, it has been shown that heme binds to Aβ peptides which may play a major role in Alzheimers disease (AD). This study illustrates that Aβ peptides can bind both Cu and heme cofactors at the same time. Both cofactors have unique spectroscopic and electrochemical features which are unaffected in the presence of the other, implying that they are electronically, chemically, and electrochemically uncoupled. These data clearly indicate that Cu cannot bind to three histidine residues simultaneously in Cu-Aβ complexes as previously proposed, since one of the histidines is involved in binding heme. The heme-Aβ and the heme-Cu-Aβ peptide complexes function as peroxidases. Interestingly, the Cu-Aβ complex also exhibits peroxidase activity, which may have significant implications in AD. Both Cu(+)-Aβ and heme (Fe(2+))-Aβ complexes reduce O(2) to H(2)O(2) quantitatively. Only one of the two electrons that are required for the reduction of O(2) to H(2)O(2) is derived from the reduced metal site, while the Tyr(10) residue of the native Aβ peptide donates the second electron. This Tyr(10) residue, the source of electron for the generation of partially reduced oxygen species (PROS, e.g., H(2)O(2)) is absent in rodents, which do not get affected by AD. When both heme and Cu are bound to the Aβ peptides, which is likely to happen physiologically, the amount of toxic PROS generated is maximum, implying that heme-Cu-Aβ complexes could potentially be most toxic for AD.
Journal of the American Chemical Society | 2011
Debajyoti Pramanik; Somdatta Ghosh Dey
Recent reports show that there is a large increase in heme in the temporal brain of Alzheimers disease (AD) patients, as heme, biosynthesized in brain cells, binds to amyloid β (Aβ), forming heme-Aβ complexes. This leads to the development of symptoms that are characteristic pathological features of AD, e.g., abnormal iron homeostasis, decay of iron regulatory proteins, dysfunction in mitochondrial complex IV, oxidative stress, etc. However, the active site resulting from heme binding to Aβ is not well characterized. For example, the coordinating residue, relevant second-sphere residues, and spin state of the Fe center are not known. In this study we have used wild-type and mutated Aβ peptides and investigated their interaction with naturally occurring heme. Our results show that, out of several possible binding sites, His(13) and His(14) residues can both bind heme under physiological conditions, resulting in an axial high-spin active site with a trans axial water-derived ligand. Peroxidase assays of these heme-peptide complexes along with pH perturbations indicate that Arg(5) is a key second-sphere residue that H-bonds to the trans axial ligand and is responsible for the peroxidase activity of the heme-Aβ complexes. The His(13) and Arg(5) residues identified in this study are both absent in rodents, which do not show AD, implicating the significance of these residues as well as heme in the pathology of AD.
Journal of the American Chemical Society | 2012
Debajyoti Pramanik; Kushal Sengupta; Soumya Mukherjee; Somdatta Ghosh Dey; Abhishek Dey
The water-soluble hydrophilic part of human Aβ peptide has been extended to include a C-terminal cysteine residue. Utilizing the thiol functionality of this cysteine residue, self-assembled monolayers (SAM) of these peptides are formed on Au electrodes. Atomic force microscopy imaging confirms formation of small Aβ aggregates on the surface of the electrode. These aggregates bind redox active metals like Cu and cofactors like heme, both of which are proposed to generate toxic partially reduced oxygen species (PROS) and play a vital role in Alzheimers disease. The spectroscopic and electrochemical properties of these Cu and heme bound Aβ SAM are similar to those reported for the soluble Cu and heme bound Aβ peptide. Experiments performed on these Aβ-SAM electrodes clearly demonstrate that (1) heme bound Aβ is kinetically more competent in reducing O(2) than Cu bound Aβ, (2) under physiological conditions the reduced Cu site produces twice as much PROS (measured in situ) than the reduced heme site, and (3) chelators like clioquinol remove Cu from these aggregates, while drugs like methylene blue inhibit O(2) reactivity of the heme cofactor. This artificial construct provides a very easy platform for investigating potential drugs affecting aggregation of human Aβ peptides and PROS generation by its complexes with redox active metals and cofactors.
Accounts of Chemical Research | 2015
Chandradeep Ghosh; Manas Seal; Soumya Mukherjee; Somdatta Ghosh Dey
Redox active iron is utilized in biology for various electron transfer and catalytic reactions essential for life, yet this same chemistry mediates the formation of partially reduced oxygen species (PROS). Oxidative stress derived from the iron accumulated in the amyloid plaques originating from amyloid β (Aβ) peptides and neurofibrillary tangles derived from hyperphosphorylated tau proteins has been implicated in the pathogenesis of Alzheimers disease (AD). Altered heme homeostasis leading to dysregulation of expression of heme proteins and heme deposits in the amyloid plaques are characteristic of the AD brain. However, the pathogenic significance of heme in neurodegeneration in AD has been unappreciated due to the lack of detailed understanding of the chemistry of the interaction of heme and Aβ peptides. As a result, the biochemistry and biophysics of heme complexes of Aβ peptides (heme-Aβ) remained largely unexplored. In this Account, we discuss the active site environment of heme bound Aβ complexes, which involves three amino acid residues unique in mammalian Aβ (Arg5, Tyr10, and His13) and missing in Aβ from rodents, which do not get affected by AD. The histidine residue binds heme, while the arginine and the tyrosine act as key second sphere residues of the heme-Aβ active site that play a crucial role in its reactivity. Generation of PROS, enhanced peroxidase activity, and oxidation of neurotransmitters such as serotonin (5-HT) are all found to be catalyzed by heme-Aβ in in vitro assays, and these reactivities can potentially be linked to the observed neuropathologies in AD brain. Association of Cu with heme-Aβ leads to the formation of heme-Cu-Aβ. The heme-Cu-Aβ complex produces a greater amount of PROS than reduced heme-Aβ or Cu-Aβ alone. Nitric oxide (NO), a signaling molecule, is found to ameliorate the detrimental effects of heme-Aβ and Cu bound heme-Aβ complexes by detaching heme from the heme-Aβ complex and releasing it into the environment solution. Heme-Aβ complexes show fast electron transfer with oxidized cytochrome c and rapid heme transfer with apomyoglobin and aponeuroglobin. NO, cytochrome c, and apoglobins can all lead to reduction in PROS generated by reduced heme-Aβ. Synthetic analogues of heme, offering a hydrophobic distal environment, have been used to trap oxygen bound intermediates, which provides insight into the mechanism of PROS generation by reduced heme-Aβ. Artificial constructs of Aβ on nonbiological platforms are used not only to stabilize metastable and physiologically relevant large and small amyloid aggregates but also to monitor the interaction of various drug candidates with heme and Cu bound Aβ aggregates, representing a tractable avenue for testing therapeutic agents targeting metals and cofactors in AD.
Inorganic Chemistry | 2013
Soumya Mukherjee; Somdatta Ghosh Dey
Deposition of human amylin or islet amyloid polypeptide (hIAPP) within the β-cells of the pancreatic islet of Langerhans is implicated in the etiology of type 2 diabetes mellitus (T2Dm). Accumulating evidences suggest that increased body iron stores, iron overload, and, in particular, higher heme-iron intake is significantly associated with higher risk of Type 2 diabetes mellitus (T2Dm) (PloS One2012, 7, e41641). Some key pathological features of T2Dm, like iron dyshomeostasis, iron accumulation, mitochondrial dysfunction, and oxidative stress are very similar to the cytopathologies of Alzheimers disease, which have been invoked to be due to heme complexation with amyloid β peptides. The similar etiology and pathogenic features in both Alzheimers disease (AD) and T2Dm indicate a common underlying mechanism, with heme playing an important role. In this study we show that hIAPP can bind heme. His18 residue of hIAPP binds heme under physiological conditions and results in an axial high-spin active site with a trans-axial water derived ligand. Arg11 is a key residue that is also essential for heme binding. Heme(Fe(2+))-hIAPP complexes are prone to produce partially reduced oxygen species (PROS). The His18 residue identified in this study is absent in rats which do not show T2Dm, implicating the significance of this residue as well as heme in the pathology of T2Dm.
Journal of Biological Inorganic Chemistry | 2014
Soumya Mukherjee; Manas Seal; Somdatta Ghosh Dey
Serotonin (5-HT) is an essential neurotransmitter for cognitive functions and formation of new memories. A deficit in 5-HT dependent neuronal activity is somewhat specific for Alzheimer’s disease. Metal-mediated oxidative degradation of neurotransmitters by Aβ bound to metals has been investigated. Heme-bound Aβ is found to catalyze the oxidative degradation of 5-HT leading to the formation of neurotoxic products dihydroxybitryptamine and tyrptamine-4,5-dione. The catalytic degradation of 5-HT is of first order with respect to both heme–Aβ and H2O2, and the maximum rate of 5-HT oxidation is obtained at physiological pH (pH 7–7.5). pH perturbation of the binding affinity of heme–Aβ complex for 5-HT indicates that the binding of the substrate (5-HT) is not the rate-determining step. Arg5 acts as a second-sphere residue facilitating the O–O bond cleavage, the mutation of which leads to a decrease in the rate of 5-HT oxidation. The pull effect of the Arg5 residue tends to facilitate the generation of the active oxidant, Compound I, below neutral pH, while the ionization of the phenol group of the substrate facilitates the generation of the active substrate above neutral pH. A combination of these two opposing effects results in the highest activity at physiological pH. Apart from the Arg5 residue, the Tyr10 residue is found to play a vital role in the 5-HT oxidation by heme–Aβ complexes.
Inorganic Chemistry | 2013
Chandradeep Ghosh; Somdatta Ghosh Dey
Alzheimers disease (AD) patients show abnormally high concentrations of Cu(2+) in the amyloid β plaques. This invokes that Cu(2+) might play a crucial role in the onset of AD. The last few decades of research have also shown that Cu(2+) plays a significant role in the aggregation of Aβ plaques in the brain and the generation of oxidative stress. Because the crystal structures of Cu-Aβ are yet to be obtained, there are various proposed models for the Cu(2+) coordination environment of Aβ peptides. In this study, we have used the truncated hydrophilic part of the native Aβ peptide to probe the Cu(2+) coordination site of the peptide, using a combination of spectroscopy and exogenous ligand-binding studies. It is evident from our study that Aβ(1-16) binds 1 equiv of Cu(2+) and yet shows an equilibrium between two species with a pK(a) of ~8.1. Ligand-field analysis of absorption and circular dichroism spectroscopy data indicates five-coordinate geometry for both components. We investigate the effect of azide and 8-hydroxyquinoline binding to Cu-Aβ and demonstrate the presence of a water-derived ligand and a second exchangeable ligand coordinated to copper at physiological pH, along the equatorial plane of a square-pyramidal active site.
Analytical Chemistry | 2017
Soumya Mukherjee; Eugene A. Kapp; Amber Lothian; Anne M. Roberts; Yury V. Vasil’ev; Berin A. Boughton; Kevin J. Barnham; W. Mei Kok; Craig A. Hutton; Colin L. Masters; Ashley I. Bush; Joseph S. Beckman; Somdatta Ghosh Dey; Blaine R. Roberts
The use of mass spectrometry coupled with chemical cross-linking of proteins has become a powerful tool for proteins structure and interactions studies. Unlike structural analysis of proteins using chemical reagents specific for lysine or cysteine residues, identification of gas-phase fragmentation patterns of endogenous dityrosine cross-linked peptides have not been investigated. Dityrosine cross-linking in proteins and peptides are clinical markers of oxidative stress, aging, and neurodegenerative diseases including Alzheimers disease and Parkinsons disease. In this study, we investigated and characterized the fragmentation pattern of a synthetically prepared dityrosine cross-linked dimer of Aβ(1-16) using ESI tandem mass spectrometry. We then detailed the fragmentation pattern of dityrosine cross-linked Aβ(1-16), using collision induced dissociation (CID), higher-energy collision induced dissociation (HCD), electron transfer dissociation (ETD), and electron capture dissociation (ECD). Application of these generic fragmentation rules of dityrosine cross-linked peptides allowed for the identification of dityrosine cross-links in peptides of Aβ and α-synuclein generated in vitro by enzymatic peroxidation. We report, for the first time, the dityrosine cross-linked residues in human hemoglobin and α-synuclein under oxidative conditions. Together these tools open up the potential for automated analysis of this naturally occurring post-translation modification in neurodegenerative diseases as well as other pathological conditions.
Inorganic Chemistry | 2016
Chandradeep Ghosh; Soumya Mukherjee; Manas Seal; Somdatta Ghosh Dey
Recent evidence has established the colocalization of amyloid-rich plaques and heme-rich deposits in the human cerebral cortex as a common postmortem feature in Alzheimers disease (AD). The amyloid β (Aβ) peptides have been shown to bind heme, and the resultant heme-Aβ complexes can generate toxic partially reduced oxygen species (PROS) and exhibit peroxidase activity. The heme-Aβ active site exhibits a concentration-dependent equilibrium between a high-spin mono-His-bound species similar to a peroxidase-type active site and a bis-His-bound six-coordinate low-spin species similar to that of a cytochrome b type active site. The ν(Fe-His) (241 cm(-1)) vibration has been identified in the high-spin heme-Aβ active site by resonance Raman spectroscopy. The formation of the low-spin heme-Aβ species is promoted by the His14 and noncoordinating second-sphere Arg5 residues. The high-spin state produces more PROS than the low-spin species. Nonbiological constructs modeling different forms of Aβ (oligomers, fibrils, etc.) suggest that the detrimental high-spin state is likely to dominate under most physiological conditions.