Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Somnath Ganguly is active.

Publication


Featured researches published by Somnath Ganguly.


Molecular Pharmaceutics | 2013

Salt and Cocrystals of Sildenafil with Dicarboxylic Acids: Solubility and Pharmacokinetic Advantage of the Glutarate Salt

Palash Sanphui; Srinu Tothadi; Somnath Ganguly; Gautam R. Desiraju

Sildenafil is a drug used to treat erectile dysfunction and pulmonary arterial hypertension. Because of poor aqueous solubility of the drug, the citrate salt, with improved solubility and pharmacokinetics, has been marketed. However, the citrate salt requires an hour to reach its peak plasma concentration. Thus, to improve solubility and bioavailability characteristics, cocrystals and salts of the drug have been prepared by treating aliphatic dicarboxylic acids with sildenafil; the N-methylated piperazine of the drug molecule interacts with the carboxyl group of the acid to form a heterosynthon. Salts are formed with oxalic and fumaric acid; salt monoanions are formed with succinic and glutaric acid. Sildenafil forms cocrystals with longer chain dicarboxylic acids such as adipic, pimelic, suberic, and sebacic acids. Auxiliary stabilization via C-H···O interactions is also present in these cocrystals and salts. Solubility experiments of sildenafil cocrystal/salts were carried out in 0.1N HCl aqueous medium and compared with the solubility of the citrate salt. The glutarate salt and pimelic acid cocrystal dissolve faster than the citrate salt in a two hour dissolution experiment. The glutarate salt exhibits improved solubility (3.2-fold) compared to the citrate salt in water. Solubilities of the binary salts follow an inverse correlation with their melting points, while the solubilities of the cocrystals follow solubilities of the coformer. Pharmacokinetic studies on rats showed that the glutarate salt exhibits doubled plasma AUC values in a single dose within an hour compared to the citrate salt. The high solubility of glutaric acid, in part originating from the strained conformation of the molecule and its high permeability, may be the reason for higher plasma levels of the drug.


Molecular Pharmaceutics | 2015

Cocrystals of Hydrochlorothiazide: Solubility and Diffusion/Permeability Enhancements through Drug–Coformer Interactions

Palash Sanphui; V. Kusum Devi; Deepa Clara; Nidhi Malviya; Somnath Ganguly; Gautam R. Desiraju

Hydrochlorothiazide (HCT) is a diuretic and a BCS class IV drug with low solubility and low permeability, exhibiting poor oral absorption. The present study attempts to improve the physicochemical properties of the drug using a crystal engineering approach with cocrystals. Such multicomponent crystals of HCT with nicotinic acid (NIC), nicotinamide (NCT), 4-aminobenzoic acid (PABA), succinamide (SAM), and resorcinol (RES) were prepared using liquid-assisted grinding, and their solubilities in pH 7.4 buffer were evaluated. Diffusion and membrane permeability were studied using a Franz diffusion cell. Except for the SAM and NIC cocrystals, all other binary systems exhibited improved solubility. All of the cocrystals showed improved diffusion/membrane permeability compared to that of HCT with the exception of the SAM cocrystal. When the solubility was high, as in the case of PABA, NCT, and RES cocrystals, the flux/permeability dropped slightly. This is in agreement with the expected interplay between solubility and permeability. Improved solubility/permeability is attributed to new drug-coformer interactions. Cocrystals of SAM, however, showed poor solubility and flux. This cocrystal contains a primary sulfonamide dimer synthon similar to that of HCT polymorphs, which may be a reason for its unusual behavior. Hirshfeld surface analysis was carried out in all cases to determine whether a correlation exists between cocrystal permeability and drug-coformer interactions.


CrystEngComm | 2013

Synthon identification in co-crystals and polymorphs with IR spectroscopy. Primary amides as a case study

Arijit Mukherjee; Srinu Tothadi; Shaunak Chakraborty; Somnath Ganguly; Gautam R. Desiraju

IR spectroscopy has been widely employed to distinguish between different crystal forms such as polymorphs, clathrates, hydrates and co-crystals. IR has been used to monitor co-crystal formation and single synthon detection. In this work, we have developed a strategy to identify multiple supramolecular synthons in polymorphs and co-crystals with this technique. The identification of multiple synthons in co-crystals with IR is difficult for several reasons. In this paper, a four step method involving well assigned IR spectral markers that correspond to bonds in a synthon is used. IR spectra of three forms of the co-crystal system, 4-hydroxybenzoic acid:4,4′-bipyridine (2 : 1), show clear differences that may be attributed to differences in the synthon combinations existing in the forms (synthon polymorphism). These differences were picked out from the three IR spectra and the bands analysed and assigned to synthons. Our method first identifies IR marker bands corresponding to (covalent) bonds in known/model crystals and then the markers are mapped in known co-crystals having single synthons. Thereafter, the IR markers are queried in known co-crystals with multiple synthons. Finally they are queried in unknown co-crystals with multiple synthons. In the last part of the study, the N–H stretching absorptions of primary amides that crystallize with the amide dimers linked in a ladder like chain show two specific absorptions which are used as marker absorptions and all variations of this band structure have been used to provide details on the environment around the dimer. The extended dimer can accordingly be easily distinguished from the isolated dimer.


Journal of the American Chemical Society | 2015

Dual Stress and Thermally Driven Mechanical Properties of the Same Organic Crystal: 2,6-Dichlorobenzylidene-4-fluoro-3-nitroaniline.

Soumyajit Ghosh; Manish Kumar Mishra; Somnath Ganguly; Gautam R. Desiraju

An elastic organic crystal, 2,6-dichlorobenzylidine-4-fluoro-3-nitroaniline (DFNA), which also shows thermosalient behavior, is studied. The presence of these two distinct properties in the same crystal is unusual and unprecedented because they follow respectively from isotropy and anisotropy in the crystal packing. Therefore, while both properties lead from the crystal structure, the mechanisms for bending and thermosalience are quite independent of one another. Crystals of the low-temperature (α) form of the title compound are bent easily without any signs of fracture with the application of deforming stress, and this bending is within the elastic limit. The crystal structure of the α-form was determined (P21/c, Z = 4, a = 3.927(7) Å, b = 21.98(4) Å, c = 15.32(3) Å). There is an irreversible phase transition at 138 °C of this form to the high-temperature β-form followed by melting at 140 °C. Variable-temperature X-ray powder diffraction was used to investigate the structural changes across the phase transition and, along with an FTIR study, establishes the structure of the β-form. A possible rationale for strain build-up is given. Thermosalient behavior arises from anisotropic changes in the three unit cell parameters across the phase transition, notably an increase in the b axis parameter from 21.98 to 22.30 Å. A rationale is provided for the existence of both elasticity and thermosalience in the same crystal. FTIR studies across the phase transition reveal important mechanistic insights: (i) increased π···π repulsions along [100] lead to expansion along the a axis; (ii) change in alignment of C-Cl and NO2 groups result from density changes; and (iii) competition between short-range repulsive (π···π) interactions and long-range attractive dipolar interactions (C-Cl and NO2) could lie at the origin of the existence of two distinctive properties.


Chemical Physics Letters | 1980

Phase transition in malonic acid: An infrared study

Somnath Ganguly; Jacob R. Fernandes; Gautam R. Desiraju; C. N. R. Rao

Malonic acid is shown to undergo an interesting phase transition at 360 K when the two non-equivalent cyclic hydrogen-bonded dimers present in the low-temperature phase become equivalent.


CrystEngComm | 2014

Synthon transferability probed with IR spectroscopy: cytosine salts as models for salts of lamivudine

Shaunak Chakraborty; Somnath Ganguly; Gautam R. Desiraju

Co-crystal screening of the anti-HIV drug lamivudine was carried out with dicarboxylic acids as co-formers, and three of the resulting crystalline solids, two salts and a co-crystal, were studied with SCXRD, PXRD and FTIR spectroscopy. Salts of cytosine, a molecule that incorporates critical structural features of lamivudine, with the same co-formers, were taken as model systems for IR spectroscopic studies of the synthons in the salts of lamivudine. It is shown that different systems with the same synthon show very similar spectral signatures in the regions corresponding to the synthon absorptions. This reveals again the modular nature of the supramolecular synthon.


CrystEngComm | 2015

IR spectroscopy as a probe for C–H⋯X hydrogen bonded supramolecular synthons

Subhankar Saha; Lalit Rajput; Sumy Joseph; Manish Kumar Mishra; Somnath Ganguly; Gautam R. Desiraju

Weak hydrogen bonds of the type C–H⋯X (X: N, O, S and halogens) have evoked considerable interest over the years, especially in the context of crystal engineering. However, association patterns of weak hydrogen bonds are generally difficult to characterize, and yet the identification of such patterns is of interest, especially in high throughput work or where single crystal X-ray analysis is difficult or impossible. To obtain structural information on such assemblies, we describe here a five step IR spectroscopic method that identifies supramolecular synthons in weak hydrogen bonded dimer assemblies, bifurcated systems, and π-electron mediated synthons. The synthons studied here contain C–H groups as hydrogen bond donors. The method involves: (i) identifying simple compounds/cocrystals/salts that contain the hydrogen bonded dimer synthon of interest or linear hydrogen bonded assemblies between the same functionalities; (ii) scanning infrared (IR) spectra of the compounds; (iii) identifying characteristic spectral differences between dimer and linear; (iv) assigning identified bands as marker bands for identification of the supramolecular synthon, and finally (v) identifying synthons in compounds whose crystal structures are not known. The method has been effectively implemented for assemblies involving dimer/linear weak hydrogen bonds in nitrobenzenes (C–H⋯O–NO), nitro-dimethylamino compounds (NMe2⋯O2N), chalcones (C–H⋯OC), benzonitriles (C–H⋯NC) and fluorobenzoic acids (C–H⋯F–C). Two other special cases of C–H⋯π and N–H⋯π synthons were studied in which the band shape of the C–H stretch in hydrocarbons and the N–H deformation in aminobenzenes was examined.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 1979

Infrared spectroscopic study of the phase transitions in CsNO3, RbNO3 and NH4NO3

J. R. Fernandes; Somnath Ganguly; C. N. R. Rao

Phase transitions of CsNO3 (II-I), RbNO3 (IV-III-II) and NH4NO3 (V-IV-III-II-I) have been studied by i.r. spectroscopy. The study has provided useful information on the changes in the dispositions of the ions during the phase transitions.


Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy | 1985

An infrared spectroscopic study of the incommensurate transitions and related phase changes in K2Pb[Cu(NO2)6] and [N(CH3)4]2MX4 (M = Mn, Co, Cu or Zn and X = Cl or Br)

Somnath Ganguly; K. J. Rao; C. N. R. Rao

K2Pb[Cu(NO2)6] and [N(CH3)4]2MX4 (M = Mn, Co, Cu or Zn and X = Cl or Br) undergo phase transitions which involve incommensurate phases. The transitions have been investigated by examining the changes in the NO2 and CH3 vibration bands in the i.r. spectra. Splitting and broadening of some of the bands across the incommensurate transitions are discussed in the context of geometrical restrictions in the incommensurate phases. The phase transitions have also been characterized using differential scanning calorimetry.


Journal of the Chemical Society, Faraday Transactions | 1981

Infrared studies of the phase transitions of alkylammonium halides, RNH3X, and bis-(alkylammonium) tetrahalogenometallates(II), (RNH3)2MX4, (R = alkyl, M = metal, X = Cl or Br)

C. N. R. Rao; Somnath Ganguly; H.Ramachandra Swamy; Ian A. Oxton

Internal vibration modes of bis-(alkylammonium) tetrachlorometallates(II) and the corresponding alkylammonium chlorides have been studied through their phase transitions using infrared spectroscopy. The studies show that the vibrational states of alkylammonium ions change markedly through the phase transitions. Spectra of the analogous tetrabromometallates and alkylammonium bromides also confirm this behaviour. There is appreciable motion of the alkylammonium ions in the high-temperature phases; thus, CH3NH+3 ions are essentially undistorted in these phases. The low-temperature, ordered phases show evidence of stronger hydrogen bonding of the cations and for the presence of C—N torsional modes.

Collaboration


Dive into the Somnath Ganguly's collaboration.

Top Co-Authors

Avatar

Gautam R. Desiraju

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

C. N. R. Rao

Jawaharlal Nehru Centre for Advanced Scientific Research

View shared research outputs
Top Co-Authors

Avatar

J. R. Fernandes

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Subhankar Saha

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Bahadur

Indian Institute of Technology Kanpur

View shared research outputs
Top Co-Authors

Avatar

Lalit Rajput

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge