Sona Hudecova
Slovak Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sona Hudecova.
Redox biology | 2015
Agnes Görlach; Katharina Bertram; Sona Hudecova; Olga Krizanova
Calcium is an important second messenger involved in intra- and extracellular signaling cascades and plays an essential role in cell life and death decisions. The Ca2+ signaling network works in many different ways to regulate cellular processes that function over a wide dynamic range due to the action of buffers, pumps and exchangers on the plasma membrane as well as in internal stores. Calcium signaling pathways interact with other cellular signaling systems such as reactive oxygen species (ROS). Although initially considered to be potentially detrimental byproducts of aerobic metabolism, it is now clear that ROS generated in sub-toxic levels by different intracellular systems act as signaling molecules involved in various cellular processes including growth and cell death. Increasing evidence suggests a mutual interplay between calcium and ROS signaling systems which seems to have important implications for fine tuning cellular signaling networks. However, dysfunction in either of the systems might affect the other system thus potentiating harmful effects which might contribute to the pathogenesis of various disorders.
International Journal of Cancer | 2012
Karel Pacak; Marta Sirova; Alessio Giubellino; Lubomira Lencesova; Lucia Csaderova; Marcela Laukova; Sona Hudecova; Olga Krizanova
Pheochromocytomas (PHEOs) and paragangliomas (PGLs) are specific types of neuroendocrine tumors that originate in the adrenal medulla or sympathetic/parasympathetic paraganglia, respectively. Although these tumors are intensively studied, a very effective treatment for metastatic PHEO or PGL has not yet been established. Preclinical evaluations of novel therapies for these tumors are very much required. Therefore, in this study we tested the effect of triptolide (TTL), a potent nuclear factor‐kappaB (NF‐κB) inhibitor, on the cell membrane norepinephrine transporter (NET) system, considered to be the gatekeeper for the radiotherapeutic agent 131I‐metaiodobenzylguanidine (131I‐MIBG). We measured changes in the mRNA and protein levels of NET and correlated them with proapoptotic factors and metastasis inhibition. The study was performed on three different stable PHEO cell lines. We found that blocking NF‐κB with TTL or capsaicin increased both NET mRNA and protein levels. Involvement of NF‐κB in the upregulation of NET was verified by mRNA silencing of this site and also by using NF‐κB antipeptide. Moreover, in vivo treatment with TTL significantly reduced metastatic burden in an animal model of metastatic PHEO. The present study for the first time shows how NF‐κB inhibitors could be successfully used in the treatment of metastatic PHEO/PGL by a significant upregulation of NET to increase the efficacy of 131I‐MIBG and by the induction of apoptosis.
Immunobiology | 2013
Marcela Laukova; Peter Vargovic; Miroslav Vlcek; Katarina Lejavova; Sona Hudecova; Olga Krizanova; Richard Kvetnansky
OBJECTIVES Stress is accompanied also by a rise in splenic catecholamines (CAs). However, indications about endogenous CA production in the spleen exist but there are no data about the cellular source of this production and possible modification by stress. Therefore, our aim was to investigate whether splenic T- and B-cells are one of main sources in the spleen expressing tyrosine hydroxylase (TH), enzyme crucial for CA biosynthesis, and phenylethanolamine N-methyltransferase (PNMT) which is necessary for epinephrine production. We also investigated whether stress is able to modify expression of both enzymes and CA levels within these cell fractions as well as tried to explain functional consequences of changes observed. RESULTS T-cells contain higher levels of TH mRNA than B-cells although protein levels appeared similar. On contrary, the PNMT mRNA and protein were higher in B-cells, which appeared to be the main source of PNMT in the spleen. T-cells increased TH and PNMT expression after acute stress while similar rise was observed in B-cells after repeated stress, most probably as a consequence of higher CA turnover in both cell populations. The rise in TH and PNMT was accompanied by an elevation of Bax/Bcl-2 mRNA ratio, number of apoptotic cells and also by a decline of IFN-γ mRNA in both cell types. Reduction of IL-2 and IL-4 mRNA was also observed in B-cells. CONCLUSION Stress-induced stimulation of endogenous CA biosynthesis in lymphocytes is dependent on the type of lymphocyte population and duration of stressor and leads to attenuated IFN-γ expression and induction of apoptosis. These changes might contribute to dysregulation of specific immune functions involving T- and B-cells and may decrease the ability to cope with intracellular agents following stress situations.
General Physiology and Biophysics | 2011
Sona Hudecova; Lubomira Lencesova; Lucia Csaderova; Marta Sirova; Dana Cholujova; Martin Cagala; Juraj Kopacek; Dusan Dobrota; Silvia Pastorekova; Olga Krizanova
Up to now a little is known about the effect of hypoxia on the sodium calcium exchanger type 1 (NCX1) expression and function. Therefore, we studied how dimethyloxallyl glycine (DMOG), an activator and stabilizer of the hypoxia-inducible factor (HIF)-1α, could affect expression of the NCX1 in HEK 293 cell line. We also tried to determine whether this activation can result in the induction of apoptosis in HEK 293 cells. We have found that DMOG treatment for 3 hours significantly increased gene expression and also protein levels of the NCX1. This increase was accompanied by a decrease in intracellular pH. Wash-out of DMOG did not result in reduction of the NCX1 mRNA and protein to original - control levels, although pH returned to physiological values. Using luciferase reporter assay we observed increase in the NCX1 promoter activity after DMOG treatment and using wild-type mouse embryonic fibroblast (MEF)-HIF-1(+/+) and HIF-1-deficient MEF-HIF-1(-/-) cells we have clearly shown that in the promoter region, HIF-1α is involved in DMOG induced upregulation of the NCX1. Moreover, we also showed that an increase in the NCX1 mRNA due to the apoptosis induction is not regulated by HIF-1α.
International Journal of Oncology | 2015
Michal Pastorek; Veronika Simko; Martina Takacova; Monika Barathova; Maria Bartosova; Hunáková L; Olga Sedlakova; Sona Hudecova; Olga Krizanova; Franck Dequiedt; Silvia Pastorekova; Sedlák J
One of the recently emerging anticancer strategies is the use of natural dietary compounds, such as sulforaphane, a cancer-chemopreventive isothiocyanate found in broccoli. Based on the growing evidence, sulforaphane acts through molecular mechanisms that interfere with multiple oncogenic pathways in diverse tumor cell types. Herein, we investigated the anticancer effects of bioavailable concentrations of sulforaphane in ovarian carcinoma cell line A2780 and its two derivatives, adriamycin-resistant A2780/ADR and cisplatin-resistant A2780/CP cell lines. Since tumor microenvironment is characterized by reduced oxygenation that induces aggressive tumor phenotype (such as increased invasiveness and resistance to chemotherapy), we evaluated the effects of sulforaphane in ovarian cancer cells exposed to hypoxia (2% O2). Using the cell-based reporter assay, we identified several oncogenic pathways modulated by sulforaphane in hypoxia by activating anticancer responses (p53, ARE, IRF-1, Pax-6 and XRE) and suppressing responses supporting tumor progression (AP-1 and HIF-1). We further showed that sulforaphane decreases the level of HIF-1α protein without affecting its transcription and stability. It can also diminish transcription and protein level of the HIF-1 target, CA IX, which protects tumor cells from hypoxia-induced pH imbalance and facilitates their migration/invasion. Accordingly, sulforaphane treatment leads to diminished pH regulation and reduced migration of ovarian carcinoma cells. These effects occur in all three ovarian cell lines suggesting that sulforaphane can overcome the chemoresistance of cancer cells. This offers a path potentially exploitable in sensitizing resistant cancer cells to therapy, and opens a window for the combined treatments of sulforaphane either with conventional chemotherapy, natural compounds, or with other small molecules.
International Journal of Oncology | 2015
Andrea Soltysova; Jan Breza; Martina Takacova; Jana Feruszova; Sona Hudecova; Barbora Novotna; Eva Rozborilova; Silvia Pastorekova; Ludevit Kadasi; Olga Krizanova
Clear cell renal cell carcinoma (ccRCC) is the most frequent type of kidney cancer. In order to better understand the biology of ccRCC, we accomplished the gene profiling of fresh tissue specimens from 11 patients with the renal tumors (9 ccRCCs, 1 oncocytoma and 1 renal B-lymphoma), in which the tumor-related data were compared to the paired healthy kidney tissues from the same patients. All ccRCCs exhibited a considerably elevated transcription of the gene coding for carbonic anhydrase IX (CAIX). Moreover, the ccRCC tumors consistently displayed increased expression of genes encoding the glycolytic pathway enzymes, e.g. hexokinase II (HK2) and lactate dehydrogenase A (LDHA) and a decreased expression of genes for the mitochondrial electron transport chain components, indicating an overall reprogramming of the energetic metabolism in this tumor type. This appears to be accompanied by altered expression of the genes of the pH regulating machinery, including ion and lactate transporters. Immunohistochemical staining of tumor tissue sections confirmed the increased expression of CAIX, HK2 and LDHA in ccRCC, validating the microarray data and supporting their potential as the energetic metabolism-related biomarkers of the ccRCC.
Oncology Reports | 2014
Olga Krizanova; Iveta Steliarova; Lucia Csaderova; Michal Pastorek; Sona Hudecova
Capsaicin, the pungent agent in chili peppers, has been shown to act as a tumor-suppressor in cancer. In our previous study, capsaicin was shown to induce apoptosis in the rat pheochromocytoma cell line (PC12 cells). Thus, the aim of the present study was to determine the potential mechanism by which capsaicin induces apoptosis. We treated PC12 cells with 50, 100 and 500 μM capsaicin and measured the reticular calcium content and expression of the reticular calcium transport systems. These results were correlated with endoplasmic reticulum (ER) stress markers CHOP, ATF4 and X-box binding protein 1 (XBP1), as well as with apoptosis induction. We observed that capsaicin decreased reticular calcium in a concentration-dependent manner. Simultaneously, expression levels of the sarco/endoplasmic reticulum pump and ryanodin receptor of type 2 were modified. These changes were accompanied by increased ER stress, as documented by increased stress markers. Thus, from these results we propose that in PC12 cells capsaicin induces apoptosis through increased ER stress.
General Physiology and Biophysics | 2014
Olga Krizanova; Jana Markova; Karel Pacak; Ludovit Skultety; Andrea Soltysova; Sona Hudecova
Diterpenoid triepoxide - Triptolide (TTL) - increased protein levels of the noradrenaline transporter in three pheochromocytoma cell lines. This transporter is involved in the apoptosis induction through the inhibition of a transcription factor NF-kappa B. Nevertheless, calcium release from the endoplasmic reticulum can also induce inner mitochondrial pathway of apoptosis in variety of cells. Therefore, the aim of this work was to evaluate an involvement of calcium and, more specifically, the intracellular calcium transport systems in the apoptosis induction in pheochrocytoma cell line PC12. We observed significantly increased amount of reticular calcium in TTL-treated cells compared to control, untreated cells. Surprisingly, gene expression of the IP3 receptors was not changed after the TTL treatment, but ryanodine receptor of the type 2 (RyR2) was downregulated and sarco/endoplasmic reticulum calcium ATPase type 3 (SERCA 3) was upregulated in TTL- treated cells, compared to untreated controls. SERCA 3 blocking with the specific blocker thapsigargin prevented increase in apoptosis observed by the TTL treatment. Decrease in the ATP production by a replacement of glucose in the cultivation medium for its nonutilizable analog 2-deoxyglucose also prevented induction of the apoptosis in TTL-treated PC12 cells. Thus, these results suggest that upregulation of the SERCA 3 is ultimately involved in the TTL-induced apoptosis in PC12 cells.
Oncotarget | 2016
Sona Hudecova; Jana Markova; Veronika Simko; Lucia Csaderova; Tibor Stračina; Marta Sirova; Michaela Fojtu; Eliska Svastova; Paulina Gronesova; Michal Pastorek; Marie Nováková; Dana Cholujova; Juraj Kopacek; Silvia Pastorekova; Sedlák J; Olga Krizanova
In this study we show that anti-tumor effect of sulforaphane (SFN) is partially realized through the type 1 inositol 1,4,5-trisphosphate receptor (IP3R1). This effect was verified in vitro on three different stable cell lines and also in vivo on the model of nude mice with developed tumors. Early response (6 hours) of A2780 ovarian carcinoma cells to SFN treatment involves generation of mitochondrial ROS and increased transcription of NRF2 and its downstream regulated genes including heme oxygenase 1, NAD(P)H:quinine oxidoreductase 1, and KLF9. Prolonged SFN treatment (24 hours) upregulated expression of NRF2 and IP3R1. SFN induces a time-dependent phosphorylation wave of HSP27. Use of IP3R inhibitor Xestospongin C (Xest) attenuates both SFN-induced apoptosis and the level of NRF2 protein expression. In addition, Xest partially attenuates anti-tumor effect of SFN in vivo. SFN-induced apoptosis is completely inhibited by silencing of IP3R1 gene but only partially blocked by silencing of NRF2; silencing of IP3R2 and IP3R3 had no effect on these cells. Xest inhibitor does not significantly modify SFN-induced increase in the rapid activity of ARE and AP1 responsive elements. We found that Xest effectively reverses the SFN-dependent increase of nuclear content and decrease of reticular calcium content. In addition, immunofluorescent staining with IP3R1 antibody revealed that SFN treatment induces translocation of IP3R1 to the nucleus. Our results clearly show that IP3R1 is involved in SFN-induced apoptosis through the depletion of reticular calcium and modulation of transcription factors through nuclear calcium up-regulation.
Cellular Physiology and Biochemistry | 2017
Barbora Chovancova; Sona Hudecova; Lubomira Lencesova; Petr Babula; Ingeborg Rezuchova; Adela Penesova; Marian Grman; Roman Moravčík; Michal Zeman; Olga Krizanova
Background/Aims: Melatonin is a hormone transferring information about duration of darkness to the organism and is known to modulate several signaling pathways in the cells, e.g. generation of endoplasmic reticulum stress, oxidative status of the cells, etc. Melatonin has been shown to exert antiproliferative and cytotoxic effects on various human cancers. We proposed that this hormone can differently affect tumour cells and healthy cells. Methods: We compared the effect of 24 h melatonin treatment on calcium transport (by fluorescent probes FLUO-3AM and Rhod-5N), ER stress (determined as changes in the expression of CHOP, XBP1 and fluorescently, using Thioflavin T), ROS formation (by CellROX® Green/Orange Reagent) and apoptosis induction (by Annexin-V-FLUOS/propidiumiodide) in two tumour cell lines – ovarian cancer cell line A2780 and stable cell line DLD1 derived from colorectal carcinoma, with non-tumour endothelial cell line EA.hy926. Results: Melatonin increased apoptosis in both tumour cell lines more than twice, while in EA.hy926 cells the apoptosis was increased only by 30%. As determined by silencing with appropriate siRNAs, both, type 1 sodium/calcium exchanger and type 1 IP3 receptor are involved in the apoptosis induction. Antioxidant properties of melatonin were significantly increased in EA.hy926 cells, while in tumour cell lines this effect was much weaker. Conclusion: Taken together, melatonin has different antioxidative effects on tumour cells compared to non-tumour ones; it also differs in the ability to induce apoptosis through the type 1 sodium/calcium exchanger, and type 1 IP3 receptor. Different targeting of calcium transport systems in tumour and normal, non-tumour cells is suggested as a key mechanism how melatonin can exert its anticancer effects. Therefore, it might have a potential as a novel therapeutic implication in cancer treatment.