Michal Pastorek
Slovak Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Michal Pastorek.
Toxicology Letters | 2014
Monika Mesárošová; Katarína Kozics; Andrea Bábelová; Eva Regendová; Michal Pastorek; Dominika Vnuková; Barbora Buliaková; Filip Rázga; Alena Gábelová
The generation of reactive oxygen species (ROS) has been proposed as the underlying mechanism involved in the genotoxicity of iron oxide nanoparticles. The data published to date are, however, inconsistent, and the mechanism underlying ROS formation has not been completely elucidated. Here, we investigated the capacity of several surface-modified magnetite nanoparticles (MNPs) to generate ROS in A549 human lung adenocarcinoma epithelial cells and HEL 12469 human embryonic lung fibroblasts. All MNPs, regardless of the coating, induced significant levels of DNA breakage in A549 cells but not in HEL 12469 cells. Under the same treatment conditions, variable low levels of intracellular ROS were detected in both A549 and HEL 12469 cells, but compared with control treatment, none of the coated MNPs produced any significant increase in oxidative damage to DNA in either of these cell lines. Indeed, no significant changes in the total antioxidant capacity and intracellular glutathione levels were observed in MNPs-treated human lung cell lines regardless of surface coating. In line with these results, none of the surface-modified MNPs increased significantly the GPx activity in A549 cells and the SOD activity in HEL 12469 cells. The GPx activity was significantly increased only in SO-Fe3O4-treated HEL 12469 cells. The SOD activity was significantly increased in SO-PEG-PLGA-Fe3O4-treated A549 cells but significantly decreased in SO-Fe3O4-treated A549 cells. Our data indicate that oxidative stress plays, at most, only a marginal role in the genotoxicity of surface-modified MNPs considered in this study in human lung cells.
Acta Physiologica | 2013
Lubomira Lencesova; S. Hudecova; Lucia Csaderova; Jana Markova; Andrea Soltysova; Michal Pastorek; Sedlák J; Mark E. Wood; Matthew Whiteman; Karol Ondrias; Olga Krizanova
To investigate an interaction between the calcium and sulphide signalling pathways, particularly effects of the slow H2S release donor morpholin‐4‐ium‐4‐methoxyphenyl‐(morpholino)‐phosphinodithioate (GYY4137) on the expression of inositol 1,4,5‐trisphosphate receptors (IP3R) with the possible impact on the apoptosis induction in HeLa cells.
Journal of Nano Research | 2012
Peter Baláz; Sedlák J; Michal Pastorek; Danka Cholujova; Kandasamy Vignarooban; Siddhesh Bhosle; P. Boolchand; Zdenka Bujňáková; Erika Dutková; Olga Kartachova; Bernhardt Stalder
In this study, arsenic sulphide As4S4 nanoparticles have been prepared, by high-energy wet milling, in the presence of sodium dodecylsulphate, which acts a surfactant. Solid state properties of the nanoparticles were characterised by XRD, Raman scattering, specific surface area and particle size distribution. Changes in surface areas of the particles, in the 0.2 - 5.4 m2 g-1 range, and nanosize distributions, in the 100 - 250 nm range, characterise the surface and morphological properties of nanorealgar. Raman scattering revealed various species in the milled sample that indicate a disproportionate reaction (3As4S4 → 4As2S3 + 4As) occurring as a consequence of milling. Anticancer effects, of the milled species, were confirmed for the human multiple myeloma U266 and OPM1 cell lines. Dissolution experiments in simulated gastric fluid show a possibility for the application of the realgar nanoparticles as an oral dose in future arsenic drug cancer treatments.
International Journal of Oncology | 2015
Michal Pastorek; Veronika Simko; Martina Takacova; Monika Barathova; Maria Bartosova; Hunáková L; Olga Sedlakova; Sona Hudecova; Olga Krizanova; Franck Dequiedt; Silvia Pastorekova; Sedlák J
One of the recently emerging anticancer strategies is the use of natural dietary compounds, such as sulforaphane, a cancer-chemopreventive isothiocyanate found in broccoli. Based on the growing evidence, sulforaphane acts through molecular mechanisms that interfere with multiple oncogenic pathways in diverse tumor cell types. Herein, we investigated the anticancer effects of bioavailable concentrations of sulforaphane in ovarian carcinoma cell line A2780 and its two derivatives, adriamycin-resistant A2780/ADR and cisplatin-resistant A2780/CP cell lines. Since tumor microenvironment is characterized by reduced oxygenation that induces aggressive tumor phenotype (such as increased invasiveness and resistance to chemotherapy), we evaluated the effects of sulforaphane in ovarian cancer cells exposed to hypoxia (2% O2). Using the cell-based reporter assay, we identified several oncogenic pathways modulated by sulforaphane in hypoxia by activating anticancer responses (p53, ARE, IRF-1, Pax-6 and XRE) and suppressing responses supporting tumor progression (AP-1 and HIF-1). We further showed that sulforaphane decreases the level of HIF-1α protein without affecting its transcription and stability. It can also diminish transcription and protein level of the HIF-1 target, CA IX, which protects tumor cells from hypoxia-induced pH imbalance and facilitates their migration/invasion. Accordingly, sulforaphane treatment leads to diminished pH regulation and reduced migration of ovarian carcinoma cells. These effects occur in all three ovarian cell lines suggesting that sulforaphane can overcome the chemoresistance of cancer cells. This offers a path potentially exploitable in sensitizing resistant cancer cells to therapy, and opens a window for the combined treatments of sulforaphane either with conventional chemotherapy, natural compounds, or with other small molecules.
BMC Cancer | 2016
Ivana Vidlickova; Franck Dequiedt; Lenka Jelenska; Olga Sedlakova; Michal Pastorek; Stanislav Stuchlík; Jaromir Pastorek; Miriam Zatovicova; Silvia Pastorekova
BackgroundCarbonic anhydrase IX (CA IX) is a tumor-associated, highly active, transmembrane carbonic anhydrase isoform regulated by hypoxia and implicated in pH control and adhesion-migration-invasion. CA IX ectodomain (ECD) is shed from the tumor cell surface to serum/plasma of patients, where it can signify cancer prognosis. We previously showed that the CA IX ECD release is mediated by disintegrin and metalloproteinase ADAM17. Here we investigated the CA IX ECD shedding in tumor cells undergoing apoptosis in response to cytotoxic drugs, including cycloheximide and doxorubicin.MethodsPresence of cell surface CA IX was correlated to the extent of apoptosis by flow cytometry in cell lines with natural or ectopic CA IX expression. CA IX ECD level was assessed by ELISA using CA IX-specific monoclonal antibodies. Effect of recombinant CA IX ECD on the activation of molecular pathways was evaluated using the cell-based dual-luciferase reporter assay.ResultsWe found a significantly lower occurrence of apoptosis in the CA IX-positive cell subpopulation than in the CA IX-negative one. We also demonstrated that the cell-surface CA IX level dropped during the death progress due to an increased ECD shedding, which required a functional ADAM17. Inhibitors of metalloproteinases reduced CA IX ECD shedding, but not apoptosis. The CA IX ECD release induced by cytotoxic drugs was connected to elevated expression of CA IX in the surviving fraction of cells. Moreover, an externally added recombinant CA IX ECD activated a pathway driven by the Nanog transcription factor implicated in epithelial-mesenchymal transition and stemness.ConclusionsThese findings imply that the increased level of the circulating CA IX ECD might be useful as an indicator of an effective antitumor chemotherapy. Conversely, elevated CA IX ECD might generate unwanted effects through autocrine/paracrine signaling potentially contributing to resistance and tumor progression.
Oncology Reports | 2014
Olga Krizanova; Iveta Steliarova; Lucia Csaderova; Michal Pastorek; Sona Hudecova
Capsaicin, the pungent agent in chili peppers, has been shown to act as a tumor-suppressor in cancer. In our previous study, capsaicin was shown to induce apoptosis in the rat pheochromocytoma cell line (PC12 cells). Thus, the aim of the present study was to determine the potential mechanism by which capsaicin induces apoptosis. We treated PC12 cells with 50, 100 and 500 μM capsaicin and measured the reticular calcium content and expression of the reticular calcium transport systems. These results were correlated with endoplasmic reticulum (ER) stress markers CHOP, ATF4 and X-box binding protein 1 (XBP1), as well as with apoptosis induction. We observed that capsaicin decreased reticular calcium in a concentration-dependent manner. Simultaneously, expression levels of the sarco/endoplasmic reticulum pump and ryanodin receptor of type 2 were modified. These changes were accompanied by increased ER stress, as documented by increased stress markers. Thus, from these results we propose that in PC12 cells capsaicin induces apoptosis through increased ER stress.
Oncotarget | 2016
Sona Hudecova; Jana Markova; Veronika Simko; Lucia Csaderova; Tibor Stračina; Marta Sirova; Michaela Fojtu; Eliska Svastova; Paulina Gronesova; Michal Pastorek; Marie Nováková; Dana Cholujova; Juraj Kopacek; Silvia Pastorekova; Sedlák J; Olga Krizanova
In this study we show that anti-tumor effect of sulforaphane (SFN) is partially realized through the type 1 inositol 1,4,5-trisphosphate receptor (IP3R1). This effect was verified in vitro on three different stable cell lines and also in vivo on the model of nude mice with developed tumors. Early response (6 hours) of A2780 ovarian carcinoma cells to SFN treatment involves generation of mitochondrial ROS and increased transcription of NRF2 and its downstream regulated genes including heme oxygenase 1, NAD(P)H:quinine oxidoreductase 1, and KLF9. Prolonged SFN treatment (24 hours) upregulated expression of NRF2 and IP3R1. SFN induces a time-dependent phosphorylation wave of HSP27. Use of IP3R inhibitor Xestospongin C (Xest) attenuates both SFN-induced apoptosis and the level of NRF2 protein expression. In addition, Xest partially attenuates anti-tumor effect of SFN in vivo. SFN-induced apoptosis is completely inhibited by silencing of IP3R1 gene but only partially blocked by silencing of NRF2; silencing of IP3R2 and IP3R3 had no effect on these cells. Xest inhibitor does not significantly modify SFN-induced increase in the rapid activity of ARE and AP1 responsive elements. We found that Xest effectively reverses the SFN-dependent increase of nuclear content and decrease of reticular calcium content. In addition, immunofluorescent staining with IP3R1 antibody revealed that SFN treatment induces translocation of IP3R1 to the nucleus. Our results clearly show that IP3R1 is involved in SFN-induced apoptosis through the depletion of reticular calcium and modulation of transcription factors through nuclear calcium up-regulation.
Oncotarget | 2016
Adriana Gibadulinová; Michal Pastorek; Pavel Filipcik; Peter Radvak; Lucia Csaderova; Borivoj Vojtesek; Silvia Pastorekova
S100P belongs to the S100 family of calcium-binding proteins regulating diverse cellular processes. Certain S100 family members (S100A4 and S100B) are associated with cancer and used as biomarkers of metastatic phenotype. Also S100P is abnormally expressed in tumors and implicated in migration-invasion, survival, and response to therapy. Here we show that S100P binds the tumor suppressor protein p53 as well as its negative regulator HDM2, and that this interaction perturbs the p53-HDM2 binding and increases the p53 level. Paradoxically, the S100P-induced p53 is unable to activate its transcriptional targets hdm2, p21WAF, and bax following the DNA damage. This appears to be related to reduced phosphorylation of serine residues in both N-terminal and C-terminal regions of the p53 molecule. Furthermore, the S100P expression results in lower levels of pro-apoptotic proteins, in reduced cell death response to cytotoxic treatments, followed by stimulation of therapy-induced senescence and increased clonogenic survival. Conversely, the S100P silencing suppresses the ability of cancer cells to survive the DNA damage and form colonies. Thus, we propose that the oncogenic role of S100P involves binding and inactivation of p53, which leads to aberrant DNA damage responses linked with senescence and escape to proliferation. Thereby, the S100P protein may contribute to the outgrowth of aggressive tumor cells resistant to cytotoxic therapy and promote cancer progression.
Mutagenesis | 2015
Eva Horváthová; Annamária Srančíková; Eva Regendová-Sedláčková; Martina Melušová; Vladimír Meluš; Jana Netriová; Zdenka Krajčovičová; Darina Slameňová; Michal Pastorek; Katarína Kozics
Nature is an attractive source of therapeutic compounds. In comparison to the artificial drugs, natural compounds cause less adverse side effects and are suitable for current molecularly oriented approaches to drug development and their mutual combining. Medicinal plants represent one of the most available remedy against various diseases. Proper examples are Salvia officinalis L. and Thymus vulgaris L. which are known aromatic medicinal plants. They are very popular and frequently used in many countries. The molecular mechanism of their biological activity has not yet been fully understood. The aim of this study was to ascertain if liver cells of experimental animals drinking extracts of sage or thyme will manifest increased resistance against oxidative stress. Adult Sprague-Dawley rats were divided into seven groups. They drank sage or thyme extracts for 2 weeks. At the end of the drinking period, blood samples were collected for determination of liver biochemical parameters and hepatocytes were isolated to analyze (i) oxidatively generated DNA damage (conventional and modified comet assay), (ii) activities of antioxidant enzymes [superoxide dismutase (SOD), glutathione peroxidase (GPx)] and (iii) content of glutathione. Intake of sage and thyme had no effect either on the basal level of DNA damage or on the activity of SOD in rat hepatocytes and did not change the biochemical parameters of blood plasma. Simultaneously, the activity of GPx was significantly increased and the level of DNA damage induced by oxidants was decreased. Moreover, sage extract was able to start up the antioxidant protection expressed by increased content of glutathione. Our results indicate that the consumption of S.officinalis and T.vulgaris extracts positively affects resistency of rat liver cells against oxidative stress and may have hepatoprotective potential.
Materials Letters | 2009
Peter Baláž; Martin Fabián; Michal Pastorek; Danka Cholujova; Sedlák J