Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sondre Meland is active.

Publication


Featured researches published by Sondre Meland.


Science of The Total Environment | 2010

Short-term temporal variations in speciation of Pb, Cu, Zn and Sb in a shooting range runoff stream.

Lene Sørlie Heier; Sondre Meland; Marita Ljønes; Brit Salbu; Arnljot Einride Strømseng

This study was designed to explore the changes in physico-chemical forms of Pb, Cu, Zn and Sb in a stream draining a contaminated shooting range, located at Steinsjøen in the South-Eastern part of Norway, during a period of 21days. To obtain information on the element species distribution, an interphased size and charge fractionation system was applied, where membrane filtration (0.45microm) and ultrafiltration using hollow fibre (nominal cut off 10kDa) were performed prior to charge fractionation using chromatography (cationic and anionic exchange resins). The results show that Pb mainly was present as particulate and colloidal high molecular mass (HMM) species, Cu as colloidal (HMM) and low molecular mass (LMM) species, while Sb and Zn were mainly present as LMM species. The total element concentrations of Pb, Cu, Zn and Sb were positively correlated to water flow and dissolved organic carbon (DOC), suggesting these are important factors in controlling the run-off of the investigated elements in this catchment. During episodes of higher water flow, the increase in element concentration was mainly in the colloidal fraction. Partial redundancy analysis (pRDA) revealed that variations in pH, HMM organic carbon (HMM OC) and LMM organic carbon (LMM OC) explained 47% of the variation in size distribution of the elements, while variations in precipitation and water flow explained 48% of the variation in the charge distribution of the elements. The variation in concentrations during the period varied by a factor of 4, also stressing the importance of frequent sampling opposed to spot sampling in environmental surveys and risk assessments.


Science of The Total Environment | 2010

Chemical and ecological effects of contaminated tunnel wash water runoff to a small Norwegian stream

Sondre Meland; Reidar Borgstrøm; Lene Sørlie Heier; Bjørn Olav Rosseland; Oddvar Lindholm; Brit Salbu

Cleaning and washing of road tunnels are routinely performed and large volumes of contaminated wash water are often discharged into nearby recipients. In the present study, traffic related contaminants were quantified in tunnel wash water (the Nordby tunnel, Norway) discharged from a sedimentation pond to a nearby small stream, Arungselva. In situ size and charge fractionation techniques were applied to quantify traffic related metal species, while PAHs were quantified in total samples. All metals and several PAHs appeared at elevated concentrations in the discharged wash water compared with concentrations measured in Arungselva upstream the pond outlet, and to concentrations measured in the pond outlet before the tunnel wash event. In addition, several contaminants (e.g. Cu, Pb, Zn, fluoranthene, pyrene) exceeded their corresponding EQS. PAH and metals like Al, Cd, Cr, Cu, Fe and Pb were associated with particles and colloids, while As, Ca, K, Mg, Mo, Ni, Sb and Zn were more associated with low molecular mass species (<10kDa). Calculated enrichment factors revealed that many of the metals were derived from anthropogenic sources, originating most likely from wear of tires (Zn), brakes (Cu and Sb), and from road salt (Na and Cl). The enrichment factors for Al, Ba, Ca, Cr, Fe, K, Mg and Ni were low, suggesting a crustal origin, e.g. asphalt wear. Based on calculated PAH ratios, PAH seemed to originate from a mixture of sources such as wear from tires, asphalt and combustion. Finally, historical fish length measurement data indicates that the fish population in the receiving stream Arungselva may have been adversely influenced by the chemical perturbations in runoffs originating from the nearby roads and tunnels during the years, as the growth in summer old sea trout (Salmo trutta L.) in downstream sections of the stream is significantly reduced compared to the upstream sections.


Journal of Hazardous Materials | 2014

Toxicity of road deicing salt (NaCl) and copper (Cu) to fertilization and early developmental stages of Atlantic salmon (Salmo salar)

Urma Mahrosh; Merethe Kleiven; Sondre Meland; Bjørn Olav Rosseland; Brit Salbu; Hans-Christian Teien

In many countries, salting of ice or snow covered roads may affect aquatic organisms in the catchment directly or indirectly by mobilization of toxic metals. We studied the toxicity of road deicing salt and copper (Cu) on the vulnerable early life stages of Atlantic salmon (Salmo salar), from fertilization till hatching. Controlled episodic exposure to road salt (≥ 5,000 mg/L) during fertilization resulted in reduced swelling and less percent egg survival. Exposure to Cu both during and post fertilization caused delayed hatching. Larval deformities were, however found as an additional effect, when eggs were exposed to high salt concentration (≥ 5,000 mg/L) mixed with Cu (10 μg Cu/L) during fertilization. Thus, it appears that the sensitivity of early developmental stages of Atlantic salmon increased when exposed to these stressors, and road salt application during spawning can pose threat to Atlantic salmon in water bodies receiving road runoff. The study gives insight on assessment and management of risks on Atlantic salmon population posed by road related hazardous chemicals.


Science of The Total Environment | 2010

Exposure of brown trout (Salmo trutta L.) to tunnel wash water runoff — Chemical characterisation and biological impact

Sondre Meland; Lene Sørlie Heier; Brit Salbu; Knut Erik Tollefsen; Eivind Farmen; Bjørn Olav Rosseland

Washing and cleaning of road tunnels are a routinely performed maintenance task, which generate significant amount of polluted wash-water runoff that normally is discharged to the nearest recipient. The present study was designed to quantify chemical contaminants (trace metals, hydrocarbons, PAH and detergents) in such wash water and assess the short term impact on brown trout (Salmo trutta L.) based on in situ experiments. Selected endpoints were accumulation of trace metals in gills, haematological variables and hepatic mRNA transcription of five biomarkers reflecting defence against free radicals, trace metals, planar aromatic hydrocarbons and endocrine disruptions which were measured prior (-3h), during (1 and 3h) and after the tunnel wash (14, 38 and 86h). Our findings showed that the runoff water was highly polluted, but most of the contaminants were associated with particles which are normally considered biologically inert. In addition, high concentrations of calcium and dissolved organic carbon were identified in the wash water, thus reducing metal toxicity. However, compared to the control fish, a rapid accumulation of trace metals in gills was observed. This was immediately followed by a modest change in blood ions and glucose in exposed fish shortly after the exposure start. However, after 38-86h post wash, gill metal concentrations, plasma ions and glucose levels recovered back to control levels. In contrast, the mRNA transcription of the CYP1A and the oxidative stress related biomarkers TRX and GCS did not increase until 14h after the exposure start and this increase was still apparent when the experiment was terminated 86h after the beginning of the tunnel wash. The triggering of the defence systems seemed to have successfully restored homeostasis of the physiological variables measured, but the fish still used energy for detoxification four days after the episode, measured as increased biomarker synthesis.


Science of The Total Environment | 2011

Hepatic gene expression profile in brown trout (Salmo trutta) exposed to traffic related contaminants

Sondre Meland; Eivind Farmen; Lene Sørlie Heier; Bjørn Olav Rosseland; Brit Salbu; You Song; Knut Erik Tollefsen

In recent decades there has been growing concern about highway runoff as a potential threat and a significant source of diffuse pollution to the aquatic environment. However, identifying ecotoxicological effects might be challenging, especially at sites where the traffic density is modest to low. Hence, there is a need for alternatives e.g. small-scale toxicity tests using conventional endpoints such as mortality and growth. The present paper presents result from a transcriptional (microarray) screening performed on liver from brown trout (Salmo trutta) acutely exposed (4h) to traffic-related contaminants during washing of a highway tunnel outside the city of Oslo, Norway. The results demonstrated that traffic-related contaminants caused a plethora of molecular changes that persisted several hours after the exposure (i.e. during recovery). Beside an evident transcriptional up-regulation of e.g. cytochrome P450 1A1 (CYP1A1), cytochrome P450 1B1 (CYP1B1), and cytosolic sulfotransferase (SULT) involved in xenobiotic biotransformation, the observed responses were predominantly associated with immunosuppression, oxidative damage, and endocrine modulation. The observed responses were likely caused by an interaction of several contaminants including trace metals and organic micro-pollutants such as PAHs.


Science of The Total Environment | 2016

PAH related effects on fish in sedimentation ponds for road runoff and potential transfer of PAHs from sediment to biota

Merete Grung; Karina Petersen; Eirik Fjeld; Ian Allan; Jan H. Christensen; Linus M.V. Malmqvist; Sondre Meland; Sissel Brit Ranneklev

Road runoff is an important source of pollution to the aquatic environment, and sedimentation ponds have been installed to mitigate effects on the aquatic environment. The purpose of this study was to investigate if a) fish from sedimentation ponds were affected by road pollution and; b) the transfer of PAHs from road runoff material to aquatic organisms was substantial. Minnow from a sedimentation pond (Skullerud) near Oslo (Norway) had higher levels of CYP1A enzyme and DNA stand breaks than minnow from the nearby river, but high concentrations of PAH-metabolites in bile revealed that both populations were highly exposed. Principal component analysis revealed that CYP1A and age of fish were correlated, while levels of PAH-metabolites were not correlated to CYP1A or DNA damage. Minnow from a lake un-affected by traffic had much lower levels of PAH-metabolites than the exposed fish, and also an improved condition. The latter results indicate that fish health was affected by road runoff. A closer investigation of PAH levels of the ecosystems of two sedimentation ponds (Skullerud and Vassum) and nearby environments were conducted. The concentration of the 16 EPA PAHs in sediments of the sedimentation ponds were high (1900-4200ngg(-1)), and even higher levels were observed in plants. Principal component analysis of selected ion chromatograms of PAHs showed a clear separation of plants vs. sediments. The plants preferentially accumulated the high molecular PAHs, both from sedimentation ponds with a petrogenic PAH isomer ratio in sediments; and from a lake with pyrogenic PAH isomer ratio in sediments.


Environmental Science & Technology | 2016

PAH Accessibility in Particulate Matter from Road-Impacted Environments

Ian Allan; Steven G. O’Connell; Sondre Meland; Kine Bæk; Merete Grung; Kim A. Anderson; Sissel Brit Ranneklev

Snowmelt, surface runoff, or stormwater releases in urban environments can result in significant discharges of particulate matter-bound polycyclic aromatic hydrocarbons (PAHs) into aquatic environments. Recently, more-specific activities such as road-tunnel washing have been identified as contributing to contaminant load to surface waters. However, knowledge of PAH accessibility in particulate matter (PM) of urban origin that may ultimately be released into urban surface waters is limited. In the present study, we evaluated the accessibility of PAHs associated with seven distinct (suspended) particulate matter samples collected from different urban sources. Laboratory-based infinite sink extractions with silicone rubber (SR) as the extractor phase demonstrated a similar pattern of PAH accessibility for most PM samples. Substantially higher accessible fractions were observed for the less-hydrophobic PAHs (between 40 and 80% of total concentrations) compared with those measured for the most-hydrophobic PAHs (<5% of total concentrations). When we focused on PAHs bound to PM from tunnel-wash waters, first-order desorption rates for PAHs with log Kow > 5.5 were found in line with those commonly found for slowly or very slowly desorbing sediment-associated contaminants. PAHs with log Kow < 5.5 were found at higher desorbing rates. The addition of detergents did not influence the extractability of lighter PAHs but increased desorption rates for the heavier PAHs, potentially contributing to increases in the toxicity of tunnel-wash waters when surfactants are used. The implications of total and accessible PAH concentrations measured in our urban PM samples are discussed in a context of management of PAH and PM emission to the surrounding aquatic environment. Although we only fully assessed PAHs in this work, further study should consider other contaminants such as OPAHs, which were also detected in all PM samples.


Journal of Hazardous Materials | 2017

Identification of non-regulated polycyclic aromatic compounds and other markers of urban pollution in road tunnel particulate matter.

Merete Grung; Alfhild Kringstad; Kine Bæk; Ian Allan; Kevin V. Thomas; Sondre Meland; Sissel Brit Ranneklev

A combination of silicone rubber extraction and non-target and suspect screening by gas chromatography coupled to high-resolution time-of flight mass spectrometry was used for the identification of compounds in particulate matter (PM). Tunnel PM is a proxy for local road pollution that constitutes a hazard to the urban environment and human health. The use of silicone rubber for the extraction of PM allowed the pre-concentration of a wide range of compounds for non-target analysis while minimising the effects of the sample matrix. As expected, polycyclic aromatic compounds (PACs) constituted the major group of compounds identified, but only 5 of 50 PACs identified were amongst those regularly monitored and many of them were alkylated or contained a heteroatom. Urban markers of contamination such as organophosphate flame-retardants, phthalates, benzothiazoles, musk compounds and a plasticiser were also identified. The level of confidence for the identifications was high based on accurate mass, the pattern of fragmentation and retention. The unequivocal identification of 16 compounds, from all groups, was confirmed by co-chromatography with standards and the compounds semi-quantified. Most of the PACs identified are not regularly monitored, and the hazards they pose are therefore unknown. Some of these PACs are known to be more persistent and mobile in the environment than the EPA PAH16.


Aquatic Toxicology | 2015

Transcriptional changes in Atlantic salmon (Salmo salar) after embryonic exposure to road salt.

Knut Erik Tollefsen; You Song; Merethe Kleiven; Urma Mahrosh; Sondre Meland; Bjørn Olav Rosseland; Hans-Christian Teien

Road salt is extensively used as a deicing chemical in road maintenance during winter and has in certain areas of the world led to density stratifications in lakes and ponds, and adversely impacted aquatic organisms in the recipients of the road run-off. Aquatic vertebrates such as fish have been particularly sensitive during fertilisation, as the fertilisation of eggs involves rapid uptake of the surrounding water, reduction in egg swelling and in ovo exposure to high road salt concentrations. The present study aimed to identify the persistent molecular changes occurring in Atlantic salmon (Salmo salar) eggs after 24h exposure to high concentrations (5000 mg/L) of road salt at fertilisation. The global transcriptional changes were monitored by a 60k salmonid microarray at the eyed egg stage (cleavage stage, 255 degree days after fertilisation) and identified a high number of transcripts being differentially regulated. Functional enrichment, pathway and gene-gene interaction analysis identified that the differentially expressed genes (DEGs) were mainly associated with toxiciologically relevant processes involved in osmoregulation, ionregulation, oxidative stress, metabolism (energy turnover), renal function and developmental in the embryos. Quantitative rtPCR analysis of selected biomarkers, identified by global transcriptomics, were monitored in the eggs for an extended range of road salt concentrations (0, 50, 100, 500 and 5000 mg/L) and revealed a positive concentration-dependent increase in cypa14, a gene involved in lipid turnover and renal function, and nav1, a gene involved in neuraxonal development. Biomarkers for osmoregulatory responses such as atp1a2, the gene encoding the main sodium/potassium ATP-fueled transporter for chloride ions, and txdc9, a gene involved in regulation of cell redox homeostasis (oxidative stress), displayed apparent concentration-dependency with exposure, although large variance in the control group precluded robust statistical discrimination between the groups. A No Transcriptional Effect Level (NOTEL) of 50mg/L road salt was found to be several orders of magnitude lower than the adverse effects documented in developing fish embryos elsewhere, albeit at concentrations realistic in lotic systems receiving run-off from road salt. It remains to be determined whether these transcriptional changes may cause adverse effects in fish at ecologically relevant exposure concentrations of road salt.


Archive | 2013

Purification Practices of Water Runoff from Construction of Norwegian Tunnels—Status and Research Gaps

Hedda Vikan; Sondre Meland

This article describes origin and effects of manmade and natural sources of water-borne pollutants related to Norwegian tunnelling projects. These include particles, acidic runoff, heavy metals, radioactivity, alkalinity, nitrogen, oil, chemicals and polypropylene fibres. Common water purification methods are described. In order to ensure quality of tunnelling water, research and development is needed. The article is concluded by identifying key research and development areas.

Collaboration


Dive into the Sondre Meland's collaboration.

Top Co-Authors

Avatar

Brit Salbu

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Bjørn Olav Rosseland

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Sissel Brit Ranneklev

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Lene Sørlie Heier

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Lindis Skipperud

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Merete Grung

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Hedda Vikan

Norwegian Public Roads Administration

View shared research outputs
Top Co-Authors

Avatar

Ian Allan

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Knut Erik Tollefsen

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Turid Hertel-Aas

Norwegian Public Roads Administration

View shared research outputs
Researchain Logo
Decentralizing Knowledge