Songbi Chen
Chinese Academy of Tropical Agricultural Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Songbi Chen.
Journal of Cell Science | 2008
Chi W. Tang; Apolinar Maya-Mendoza; Catherine Martin; Kang Zeng; Songbi Chen; Dorota Feret; Stuart A. Wilson; Dean A. Jackson
Spatial organisation of nuclear compartments is an important regulator of chromatin function, yet the molecular principles that maintain nuclear architecture remain ill-defined. We have used RNA interference to deplete key structural nuclear proteins, the nuclear lamins. In HeLa cells, we show that reduced expression of lamin B1, but not lamin A/C, severely inhibits RNA synthesis – first by RNA polymerase II and later by RNA polymerase I. Declining levels of transcription correlate with different morphological changes in major nuclear compartments, nucleoli and nuclear speckles. Ultimately, nuclear changes linked to the loss of synthetic activity result in expansion of the inter-chromatin domain and corresponding changes in the structure and spatial organisation of chromosome territories, which relocate towards the nuclear periphery. These results show that a lamin B1-containing nucleoskeleton is required to maintain RNA synthesis and that ongoing synthesis is a fundamental determinant of global nuclear architecture in mammalian cells.
Journal of Cell Science | 2009
Catherine Martin; Songbi Chen; Apolinar Maya-Mendoza; Josip Lovrić; Paul F. G. Sims; Dean A. Jackson
The dynamic ability of genomes to interact with discrete nuclear compartments appears to be essential for chromatin function. However, the extent to which structural nuclear proteins contribute to this level of organization is largely unresolved. To test the links between structure and function, we evaluated how nuclear lamins contribute to the organization of a major functional compartment, the nucleolus. HeLa cells with compromised expression of the genes encoding lamins were analyzed using high-resolution imaging and pull-down assays. When lamin B1 expression was depleted, inhibition of RNA synthesis correlated with complex structural changes within the nucleolar active centers until, eventually, the nucleoli were dispersed completely. With normal lamin expression, the nucleoli were highly plastic, with dramatic and freely reversible structural changes correlating with the demand for ribosome biogenesis. Preservation of the nucleolar compartment throughout these structural transitions is shown to be linked to lamin B1 expression, with the lamin B1 protein interacting with the major nucleolar protein nucleophosmin/B23.
PLOS ONE | 2010
Catherine Martin; Songbi Chen; Daniela Heilos; Guido Sauer; Jessica Hunt; Alexander G. Shaw; Paul F. G. Sims; Dean A. Jackson; Josip Lovrić
The Raf/ERK (Extracellular Signal Regulated Kinase) signal transduction pathway controls numerous cellular processes, including growth, differentiation, cellular transformation and senescence. ERK activation is thought to involve complex spatial and temporal regulation, to achieve a high degree of specificity, though precisely how this is achieved remains to be confirmed. We report here that prolonged activation of a conditional form of c-Raf-1 (BXB-ER) leads to profound changes in the level and distribution of a heterochromatic histone mark. In mouse fibroblasts, the heterochromatic trimethylation of lysine 9 in histone H3 (H3K9Me3) is normally confined to pericentromeric regions. However, following ERK activation a genome-wide redistribution of H3K9Me3 correlates with loss of the histone modification from chromocentres and the appearance of numerous punctuate sites throughout the interphase nucleus. These epigenetic changes during interphase correlate with altered chromosome structure during mitosis, where robust H3K9Me3 signals appear within telomeric heterochromatin. This pattern of heterochromatinization is distinct from previously described oncogene induced senescence associated heterochromatin foci (SAHF), which are excluded from telomeres. The H3K9Me3 histone mark is known to bind the major heterochromatin protein HP1 and we show that the alterations in the distribution of this histone epistate correlate with redistribution of HP1β throughout the nucleus. Interestingly while ERK activation is fully reversible, the observed chromatin changes induced by epigenetic modifications are not reversible once established. We describe for the first time a link from prolonged ERK activation to stable changes in genome organization through redistribution of heterochromatic domains involving the telomeres. These epigenetic changes provide a possible mechanism through which prolonged activation of Raf/ERK can lead to growth arrest or the induction of differentiation, senescence and cancer.
The Open Biochemistry Journal | 2012
Luiz Joaquim Castelo Branco Carvalho; John Lippolis; Songbi Chen; Cláudia Regina Batista de Souza; Eduardo Alano Vieira; James V. Anderson
Carotenoid-protein complex (CPC) was isolated from chromoplast-enriched suspensions of cassava storage root (CSR) using size exclusion chromatography and characterized. Peptide sequences (LC_MS/MS spectrum) obtained from CPC and their corresponding proteins were obtained using publically available databases. Small Heat Shock Proteins (sHSPs) were the most abundant proteins identified in the CPC. Western blot analysis showed that Fribrillin and Or-protein were present in chromoplast-enriched suspensions of yellow root but not in the complex or white root. Results from qRT-PCR helped identify an isoform of HSP21 possessing four single point mutations in the intense yellow CSR that may be responsible for increased sequestration of b-carotene.
PLOS ONE | 2014
Feifei An; Jie Fan; Jun Li; Qing X. Li; Kaimian Li; Wenli Zhu; Feng Wen; Luiz Joaquim Castelo Branco Carvalho; Songbi Chen
Cassava polyploid breeding has drastically improved our knowledge on increasing root yield and its significant tolerance to stresses. In polyploid cassava plants, increases in DNA content highly affect cell volumes and anatomical structures. However, the mechanism of this effect is poorly understood. The purpose of the present study was to compare and validate the changes between cassava cultivar NZ199 diploid and autotetraploid at proteomic levels. The results showed that leaf proteome of cassava cultivar NZ199 diploid was clearly differentiated from its autotetraploid genotype using 2-DE combined MS technique. Sixty-five differential protein spots were seen in 2-DE image of autotetraploid genotype in comparison with that of diploid. Fifty-two proteins were identified by MALDI-TOF-MS/MS, of which 47 were up-regulated and 5 were down-regulated in autotetraploid genotype compared with diploid genotype. The classified functions of 32 up-regulated proteins were associated with photosynthesis, defense system, hydrocyanic acid (HCN) metabolism, protein biosynthesis, chaperones, amino acid metabolism and signal transduction. The remarkable variation in photosynthetic activity, HCN content and resistance to salt stress between diploid and autotetraploid genotypes is closely linked with expression levels of proteomic profiles. The analysis of protein interaction networks indicated there are direct interactions between the 15 up-regulation proteins involved in the pathways described above. This work provides an insight into understanding the protein regulation mechanism of cassava polyploid genotype, and gives a clue to improve cassava polyploidy breeding in increasing photosynthesis and resistance efficiencies.
Chromosome Research | 2010
Catherine Martin; Songbi Chen; Dean A. Jackson
Cell type and tissue architecture correlate with genome organization in higher eukaryotes, and structural nuclear landmarks are faithfully transmitted from one cell generation to the next. However, how nuclear components find their place in the nucleus after mitosis is still a matter of debate. As the major structural proteins within nuclei, the nuclear lamins are good candidates to re-establish nuclear compartments following mitosis. Human cells with reduced expression of the major B-type lamin protein, lamin B1, were generated using RNA interference. Mitotic and nuclear assembly phenotypes were then visualized in both fixed and living cells. Mitotic defects in lamin B1-depleted cells correlated with a general deterioration in nuclear compartmentalization and chromatin structure, frequent failure of chromosome segregation, and profound disorganization of centromeres. Examination of cells with normal lamin B1 expression indicated that small lamin B1 foci remain associated with major nuclear compartments—chromatin, nucleoli, and nuclear speckles—during an unperturbed mitosis. Our experiments show that normal lamin B1 expression is required for successful cell division and provide preliminary evidence that lamin B1-containing remnants of the interphase nucleoskeleton persist throughout mitosis. We suggest that these residual structures provide landmarks that are targeted during nuclear reassembly to allow key features of nuclear organization to be inherited from one cell cycle to the next.
Journal of Proteome Research | 2009
Songbi Chen; Catherine Martin; Apolinar Maya-Mendoza; Chi W. Tang; Josip Lovrić; Paul F. G. Sims; Dean A. Jackson
Nuclear lamins are intermediate filament proteins that define the shape and stability of nuclei in mammalian cells. In addition to this dominant structural role, recent studies have suggested that the lamin proteins also regulate fundamental aspects of nuclear function. In order to understand different roles played by lamin proteins, we used RNA interference to generate a series of HeLa cell lines to study loss-of-function phenotypes associated with depletion of lamin protein expression. In this study, we used genome-wide proteomic approaches to monitor global changes in protein expression in cells with <10% of normal lamin A/C expression. Of approximately 2000 protein spots analyzed by two-dimensional electrophoresis, only 38 showed significantly altered expression in lamin A/C depleted cells. Of these, 4 protein spots were up-regulated, and 34 were down-regulated. Significant changes were seen to involve the general reduction in expression of cytoskeletal proteins, consistent with altered functionality of the structural cellular networks. At the same time, alterations in expression of proteins involved in cellular metabolism correlated with altered patterns of metabolic activity. In order to link these two features, we used antibody microarrays to perform a focused analysis of expression of cell cycle regulatory proteins. This confirmed a general reduction in expression of proteins regulating cell cycle progression and alteration in signaling pathways that regulate the metabolic activity of cells. The cross-talk between signal transduction and the cytoskeleton emphasizes how structural and kinase-based networks are integrated in mammalian cells to fine-tune metabolic responses.
Journal of Proteome Research | 2009
Songbi Chen; Apolinar Maya-Mendoza; Kang Zeng; Chi W. Tang; Paul F. G. Sims; Josip Loric; Dean A. Jackson
The Checkpoint kinase 1 (Chk1) plays a central role in the cellular response to DNA damage and also contributes to the efficacy of DNA replication in the absence of genomic stress. However, we have only limited knowledge regarding the molecular mechanisms that regulate differential Chk1 function in the absence and presence of DNA damage. To address this, we used vertebrate cells with compromised Chk1 function to analyze how altered Chk1 activity influences protein interactions in chromatin. Avian and mammalian cells with compromised Chk1 activity were used in combination with genomic stress, induced by UV, and DNA-associated proteomes were analyzed using 2-DE/MS proteomics and Western-blot analysis. Only one protein, the histone chaperone nucelophosmin, was altered consistently in line with changes in chromatin-associated Chk1 and increased in response to DNA damage. Purified Chk1 and NPM were shown to interact in vitro and strong in vivo interactions were implied from immunoprecipitation analysis of chromatin extracts. During chromatin immunoprecipitation, coassociation of the major cell cycle regulator proteins p53 and CDC25A with both Chk1 and NPM suggests that these proteins are components of complex interaction networks that operate to regulate cell proliferation and apoptosis in vertebrate cells.
Acta Physiologiae Plantarum | 2017
Astride Stéphanie Mouafi Djabou; Luiz Joaquim Castelo Branco Carvalho; Qing X. Li; Nicolas Niemenak; Songbi Chen
Postharvest physiological deterioration (PPD) of cassava (Manihot esculenta) storage roots is a complex physiological and biochemical process which involve many regulatory networks linked with specific proteins modulation and signaling transduction pathways. However, it is poorly understood regarding biological regulation, and the interactions among protein groups and signals to determine PPD syndrome in cassava storage roots. This review sheds some light on the possible molecular mechanisms involved in reactive oxygen species (ROS), calcium signaling transduction, and programmed cell death (PCD) in cassava PPD syndrome. A model for predicting crosstalk among calcium signaling, ROS and PCD is suggested to fine-tune PPD syndrome. This would clues to cassava molecular breeding to alleviate the PPD effects on the shelf-life.
PLOS ONE | 2016
Feifei An; Ting Chen; Djabou Mouafi Astride Stéphanie; Kaimian Li; Qing X. Li; Luiz Joaquim Castelo Branco Carvalho; Keith Tomlins; Jun Li; Bi Gu; Songbi Chen
Cassava (Manihot esculenta Crantz) wild relatives remain a largely untapped potential for genetic improvement. However, the domestication syndrome phenomena from wild species to cultivated cassava remain poorly understood. The analysis of leaf anatomy and photosynthetic activity showed significantly different between cassava cultivars SC205, SC8 and wild relative M. esculenta ssp. Flabellifolia (W14). The dry matter, starch and amylose contents in the storage roots of cassava cultivars were significantly more than that in wild species. In order to further reveal the differences in photosynthesis and starch accumulation of cultivars and wild species, the globally differential proteins between cassava SC205, SC8 and W14 were analyzed using 2-DE in combination with MALDI-TOF tandem mass spectrometry. A total of 175 and 304 proteins in leaves and storage roots were identified, respectively. Of these, 122 and 127 common proteins in leaves and storage roots were detected in SC205, SC8 and W14, respectively. There were 11, 2 and 2 unique proteins in leaves, as well as 58, 9 and 12 unique proteins in storage roots for W14, SC205 and SC8, respectively, indicating proteomic changes in leaves and storage roots between cultivated cassava and its wild relatives. These proteins and their differential regulation across plants of contrasting leaf morphology, leaf anatomy pattern and photosynthetic related parameters and starch content could contribute to the footprinting of cassava domestication syndrome. We conclude that these global protein data would be of great value to detect the key gene groups related to cassava selection in the domestication syndrome phenomena.
Collaboration
Dive into the Songbi Chen's collaboration.
Luiz Joaquim Castelo Branco Carvalho
Empresa Brasileira de Pesquisa Agropecuária
View shared research outputs