Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Songbo Xie is active.

Publication


Featured researches published by Songbo Xie.


Protein & Cell | 2011

Microtubule-associated deacetylase HDAC6 promotes angiogenesis by regulating cell migration in an EB1-dependent manner

Dengwen Li; Songbo Xie; Yuan Ren; Lihong Huo; Jinmin Gao; Dandan Cui; Min Liu; Jun Zhou

Angiogenesis, a process by which the preexisting blood vasculature gives rise to new capillary vessels, is associated with a variety of physiologic and pathologic conditions. However, the molecular mechanism underlying this important process remains poorly understood. Here we show that histone deacetylase 6 (HDAC6), a microtubule-associated enzyme critical for cell motility, contributes to angiogenesis by regulating the polarization and migration of vascular endothelial cells. Inhibition of HDAC6 activity impairs the formation of new blood vessels in chick embryos and in angioreactors implanted in mice. The requirement for HDAC6 in angiogenesis is corroborated in vitro by analysis of endothelial tube formation and capillary sprouting. Our data further show that HDAC6 stimulates membrane ruffling at the leading edge to promote cell polarization. In addition, microtubule end binding protein 1 (EB1) is important for HDAC6 to exert its activity towards the migration of endothelial cells and generation of capillary-like structures. These results thus identify HDAC6 as a novel player in the angiogenic process and offer novel insights into the molecular mechanism governing endothelial cell migration and angiogenesis.


PLOS ONE | 2014

Identification of a Role for the PI3K/AKT/mTOR Signaling Pathway in Innate Immune Cells

Songbo Xie; Miao Chen; Bing Yan; Xianfei He; Xiwen Chen; Dengwen Li

The innate immune system is the first line of host defense against infection and involves several different cell types. Here we investigated the role of the phosphatidylinositol 3 kinase (PI3K) signaling pathway in innate immune cells. By blocking this pathway with pharmacological inhibitors, we found that the production of proinflammatory cytokines was drastically suppressed in monocytes and macrophages. Further study revealed that the suppression was mainly related to the mammalian target of rapamycin (mTOR)/p70S6K signaling. In addition, we found that the PI3K pathway was involved in macrophage motility and neovascularization. Our data provide a rationale that inhibition of the PI3K signaling pathway could be an attractive approach for the management of inflammatory disorders.


Protein & Cell | 2014

Histone deacetylase 6 and cytoplasmic linker protein 170 function together to regulate the motility of pancreatic cancer cells

Dengwen Li; Xiaodong Sun; Linlin Zhang; Bing Yan; Songbo Xie; Ruming Liu; Min Liu; Jun Zhou

Pancreatic cancer is a devastating disease with the worst prognosis among all the major human malignancies. The propensity to rapidly metastasize contributes significantly to the highly aggressive feature of pancreatic cancer. The molecular mechanisms underlying this remain elusive, and proteins involved in the control of pancreatic cancer cell motility are not fully characterized. In this study, we find that histone deacetylase 6 (HDAC6), a member of the class II HDAC family, is highly expressed at both protein and mRNA levels in human pancreatic cancer tissues. HDAC6 does not obviously affect pancreatic cancer cell proliferation or cell cycle progression. Instead, it significantly promotes the motility of pancreatic cancer cells. Further studies reveal that HDAC6 interacts with cytoplasmic linker protein 170 (CLIP-170) and that these two proteins function together to stimulate the migration of pancreatic cancer cells. These findings provide mechanistic insight into the progression of pancreatic cancer and suggest HDAC6 as a potential target for the management of this malignancy.


PLOS ONE | 2014

HDAC6 deacetylase activity is critical for lipopolysaccharide-induced activation of macrophages.

Bing Yan; Songbo Xie; Zhu Liu; Jie Ran; Yuanyuan Li; Jian Wang; Yang Yang; Jun Zhou; Dengwen Li; Min Liu

Activated macrophages play an important role in both innate and adaptive immune responses, and aberrant activation of macrophages often leads to inflammatory and immune disorders. However, the molecular mechanisms of how macrophages are activated are not fully understood. In this study, we identify a novel role for histone deacetylse 6 (HDAC6) in lipopolysaccharide (LPS)-induced macrophage activation. Our data show that suppression of HDAC6 activity significantly restrains LPS-induced activation of macrophages and production of pro-inflammatory cytokines. Further study reveals that the regulation of macrophage activation by HDAC6 is independent of F-actin polymerization and filopodium formation; instead, it is mediated by the effects of HDAC6 on cell adhesion and microtubule acetylation. These data thus suggest that HDAC6 is an important regulator of LPS-induced macrophage activation and might be a potential target for the management of inflammatory disorders.


Theranostics | 2014

Microtubule-Associated Protein Mdp3 Promotes Breast Cancer Growth and Metastasis

Tala; Songbo Xie; Xiaodong Sun; Xiaoou Sun; Jie Ran; Linlin Zhang; Dengwen Li; Min Liu; Gang Bao; Jun Zhou

Breast cancer is the most prevalent cancer in women worldwide with a high mortality rate, and the identification of new biomarkers and targets for this disease is greatly needed. Here we present evidence that microtubule-associated protein (MAP) 7 domain-containing protein 3 (Mdp3) is highly expressed in clinical samples and cell lines of breast cancer. The expression of Mdp3 correlates with clinicopathological parameters indicating breast cancer malignancy. In addition, Mdp3 promotes breast cancer cell proliferation and motility in vitro and stimulates breast cancer growth and metastasis in mice. Mechanistic studies reveal that γ-tubulin interacts with and recruits Mdp3 to the centrosome and that the centrosomal localization of Mdp3 is required for its activity to promote breast cancer cell proliferation and motility. These findings suggest a critical role for Mdp3 in the growth and metastasis of breast cancer and may have important implications for the management of this disease.


Cancer Biology & Therapy | 2014

HDAC6 regulates neuroblastoma cell migration and may play a role in the invasion process

Linlin Zhang; Ningning Liu; Songbo Xie; Xianfei He; Jun Zhou; Min Liu; Dengwen Li

Neuroblastoma is one of the most prevalent pediatric extracranial solid tumors and is often diagnosed after dissemination has occurred. Despite recent advances in multimodal therapies of this malignancy, its therapeutic efficacy remains poor. Novel treatment strategies are thus in great need. Herein, we demonstrate that histone deacetylase 6 (HDAC6), a member of the deacetylase family that is localized predominantly in the cytoplasm, is involved in neuroblastoma dissemination. HDAC6 expression in neuroblastoma tissue samples varied with the site of the tumor. HDAC6 showed little impact on the proliferation of neuroblastoma cells. Instead, downregulation of HDAC6 expression by RNA interference or inhibition of its catalytic activity by the pharmacological inhibitor tubacin significantly decreased the migration of 3 human malignant neuroblastoma cell lines and reduced the invasion ability of one of the 3 cell lines, but only slightly affected the migration and invasion of human normal brain glial cells. Our data further revealed that the regulation of neuroblastoma cell migration by HDAC6 was mediated by its effects on cell polarization and adhesion. These findings suggest a role for HDAC6 in neuroblastoma dissemination and a potential of using HDAC6 inhibitors for the treatment of this malignancy.


Scientific Reports | 2016

Cep70 overexpression stimulates pancreatic cancer by inducing centrosome abnormality and microtubule disorganization.

Songbo Xie; Juan Qin; Shiyu Liu; Yijun Zhang; Jun Wang; Xingjuan Shi; Dengwen Li; Jun Zhou; Min Liu

The centrosome is crucial for mitotic fidelity, and centrosome aberrations are associated with genomic instability and tumorigenesis. The centrosomal protein Cep70 has been reported to play a role in various cellular activities. However, whether this protein is involved in pathological processes remains unknown. In this study, we demonstrate that Cep70 is highly expressed in pancreatic cancer tissues. Cep70 expression correlates with clinicopathological parameters of pancreatic cancer, including histological grade, pathological tumor node metastasis stage, lymph node metastasis, and carbohydrate antigen 19-9 level. Depletion of Cep70 significantly suppresses pancreatic cancer cell proliferation and promotes apoptotic cell death, and exogenous expression of Cep70 can rescue the above effects. Cep70 also stimulates colony formation in soft agar and enhances tumor growth in mice. Our data further show that ectopic expression of Cep70 in pancreatic cancer cells results in the mislocalization of centrosomal proteins, including γ-tubulin and pericentrin, and the formation of intracellular aggregates. In addition, Cep70 overexpression leads to microtubule disorganization and the formation of multipolar spindles during mitosis. Our study thus unravels a critical role for Cep70 in pancreatic cancer and suggests Cep70 as a potential biomarker and therapeutic target for this deadly disease.


Theranostics | 2017

HDAC6 regulates IL-17 expression in T lymphocytes: implications for HDAC6-targeted therapies

Bing Yan; Yang Liu; Hong Bai; Miao Chen; Songbo Xie; Dengwen Li; Min Liu; Jun Zhou

The pro-inflammatory cytokine interleukin 17 (IL-17) is critically involved in immunity and inflammation. T-helper 17 and γδ T cells are the predominant sources of IL-17 in the immune system. However, the mechanisms by which the expression of IL-17 is regulated in T cells remain elusive. Here, we demonstrate that loss of histone deacetylase 6 (HDAC6) in mice does not affect the generation of CD4+ or CD8+ T cells, but stimulates the development of IL-17-producing γδ T cells. Our data further show that HDAC6 deficiency increases the production of IL-17 by Vγ4+ γδ T cells in the spleen and lymph nodes. Consistent with these observations, small-molecule inhibition of HDAC6 activity in γδ T cells promotes the expression of IL-17 in vitro. These data thus reveal that HDAC6 represses IL-17 production in T cells, providing novel insights into the role of HDAC6 in the immune system. These findings also have important implications for the clinical investigation of HDAC6-targeted therapies.


PLOS ONE | 2015

Lonafarnib is a potential inhibitor for neovascularization.

Linlin Sun; Songbo Xie; Guoyuan Peng; Jian Wang; Yuanyuan Li; Juan Qin; Diansheng Zhong

Atherosclerosis is a common cardiovascular disease that involves the build-up of plaque on the inner walls of the arteries. Intraplaque neovacularization has been shown to be essential in the pathogenesis of atherosclerosis. Previous studies showed that small-molecule compounds targeting farnesyl transferase have the ability to prevent atherosclerosis in apolipoprotein E-deficient mice, but the underlying mechanism remains to be elucidated. In this study, we found that lonafarnib, a specific inhibitor of farnesyl transferase, elicits inhibitory effect on vascular endothelial capillary assembly in vitro in a dose-dependent manner. In addition, we showed that lonafarnib treatment led to a dose-dependent decrease in scratch wound closure in vitro, whereas it had little effect on endothelial cell proliferation. These data indicate that lonafarnib inhibits neovascularization via directly targeting endothelial cells and disturbing their motility. Moreover, we demonstrated that pharmacological inhibition of farnesyl transferase by lonafarnib significantly impaired centrosome reorientation toward the leading edge of endothelial cells. Mechanistically, we found that the catalytic β subunit of farnesyl transferase associated with a cytoskeletal protein important for the establishment and maintenance of cell polarity. Additionally, we showed that lonafarnib remarkably inhibited the expression of the cytoskeletal protein and interrupted its interaction with farnesyl transferase. Our findings thus offer novel mechanistic insight into the protective effect of farnesyl transferase inhibitors on atherosclerosis and provide encouraging evidence for the potential use of this group of agents in inhibiting plaque neovascularization.


Theranostics | 2018

Histone deacetylase 6 modulates macrophage infiltration during inflammation

Bing Yan; Songbo Xie; Yang Liu; Wenxuan Liu; Dengwen Li; Min Liu; Hongbo R. Luo; Jun Zhou

Mice with histone deacetylase 6 (HDAC6) deficiency grow and develop normally but exhibit impaired immune response. The molecular mechanisms for this phenotype remain largely elusive. Methods: A mouse acute peritonitis model was used to study the infiltration of neutrophils and monocyte-derived macrophages. In vitro cell motility assays were performed to analyze monocyte/macrophage recruitment. Fluorescence microscopy and flow cytometry were performed to examine the phagocytic ability of macrophages. Immunofluorescence microscopy was used to investigate protein localization, protrusion formation, and microtubule acetylation. Results: HDAC6 deficiency does not affect neutrophil infiltration, but instead attenuates the infiltration of monocyte-derived macrophages into the peritoneal cavity. HDAC6 plays a specific role in monocyte/macrophage recruitment. Loss of HDAC6 suppresses the phagocytic capacity of macrophages challenged with E. coli. Lipopolysaccharide stimulation results in the translocation of HDAC6 and cortactin from the cytosol to the cell periphery, promotes the formation of filopodial protrusions, and enhances microtubule acetylation around the microtubule-organizing center, all of which are abrogated by HDAC6 deficiency. Conclusion: These findings implicate HDAC6 in the innate immune response and suggest that it may serve as a promising target for the treatment of macrophage-associated immune diseases.

Collaboration


Dive into the Songbo Xie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Min Liu

Ministry of Education

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge