Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Songhai Li is active.

Publication


Featured researches published by Songhai Li.


Journal of the Acoustical Society of America | 2005

Echolocation signals of the free-ranging Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientialis)

Songhai Li; Kexiong Wang; Ding Wang; Tomonari Akamatsu

This paper describes the high-frequency echolocation signals from free-ranging Yangtze finless porpoise in the Tian-e-zhou Baiji National Natural Reserve in Hubei Province, China. Signal analysis showed that the Yangtze finless porpoise clicks are typical high-frequency narrow-band (relative width of the frequency spectrum Q = 6.6 +/- 1.56, N = 548) ultrasonic pulses. The peak frequencies of the typical clicks range from 87 to 145 kHz with an average of 125 +/- 6.92 kHz. The durations range from 30 to 122 micros with an average of 68 +/- 14.12, as. The characteristics of the signals are similar to those of other members of the Phocoenidae as well as the distantly related delphinids, Cephalorhynchus spp. Comparison of these signals to those of the baiji (Lipotes vexillifer), who occupies habitat similar to that of the Yangtze finless porpoise, showed that the peak frequencies of clicks produced by the Yangtze finless porpoise are remarkably higher than those produced by the baiji. Difference in peak frequency between the two species is probably linked to the different size of preferred prey fish. Clear double-pulse and multi-pulse reverberation structures of clicks are noticed, and there is no indication of any low-frequency (< 70 kHz) components during the recording period.


Journal of the Acoustical Society of America | 2008

Estimation of the detection probability for Yangtze finless porpoises (Neophocaena phocaenoides asiaeorientalis) with a passive acoustic method.

Tomonari Akamatsu; Ding Wang; Kexiong Wang; Songhai Li; Shouyue Dong; Xiujiang Zhao; Jay Barlow; Brent S. Stewart; Michael Richlen

Yangtze finless porpoises were surveyed by using simultaneous visual and acoustical methods from 6 November to 13 December 2006. Two research vessels towed stereo acoustic data loggers, which were used to store the intensity and sound source direction of the high frequency sonar signals produced by finless porpoises at detection ranges up to 300 m on each side of the vessel. Simple stereo beam forming allowed the separation of distinct biosonar sound source, which enabled us to count the number of vocalizing porpoises. Acoustically, 204 porpoises were detected from one vessel and 199 from the other vessel in the same section of the Yangtze River. Visually, 163 and 162 porpoises were detected from two vessels within 300 m of the vessel track. The calculated detection probability using acoustic method was approximately twice that for visual detection for each vessel. The difference in detection probabilities between the two methods was caused by the large number of single individuals that were missed by visual observers. However, the sizes of large groups were underestimated by using the acoustic methods. Acoustic and visual observations complemented each other in the accurate detection of porpoises. The use of simple, relatively inexpensive acoustic monitoring systems should enhance population surveys of free-ranging, echolocating odontocetes.


The Journal of Experimental Biology | 2010

Scanning sonar of rolling porpoises during prey capture dives

Tomonari Akamatsu; Ding Wang; Kexiong Wang; Songhai Li; Shouyue Dong

SUMMARY Dolphins and porpoises have excellent biosonar ability, which they use for navigation, ranging and foraging. However, the role of biosonar in free-ranging small cetaceans has not been fully investigated. The biosonar behaviour and body movements of 15 free-ranging finless porpoises (Neophocaena phocaenoides) were observed using electronic tags attached to the animals. The porpoises often rotated their bodies more than 60 deg., on average, around the body axis in a dive bout. This behaviour occupied 31% of the dive duration during 186 h of effective observation time. Rolling dives were associated with extensive searching effort, and 23% of the rolling dive time was phonated, almost twice the phonation ratio of upright dives. Porpoises used short inter-click interval sonar 4.3 times more frequently during rolling dives than during upright dives. Sudden speed drops, which indicated that an individual turned around, occurred 4.5 times more frequently during rolling dives than during upright dives. Together, these data suggest that the porpoises searched extensively for targets and rolled their bodies to enlarge the search area by changing the narrow beam axis of the biosonar. Once a possible target was detected, porpoises frequently produced short-range sonar sounds. Continuous searching for prey and frequent capture trials appeared to occur during rolling dives of finless porpoises. In contrast, head movements ranging ±2 cm, which can also change the beam axis, were regularly observed during both dives. Head movements might assist in instant assessment of the arbitrary direction by changing the beam axis rather than prey searching and pursuit.


Journal of the Acoustical Society of America | 2005

A passive acoustic monitoring method applied to observation and group size estimation of finless porpoises

Kexiong Wang; Ding Wang; Tomonari Akamatsu; Songhai Li; Jianqiang Xiao

The present study aimed at determining the detection capabilities of an acoustic observation system to recognize porpoises under local riverine conditions and compare the results with sighting observations. Arrays of three to five acoustic data loggers were stationed across the main channel of the Tian-e-zhou Oxbow of Chinas Yangtze River at intervals of 100-150 m to record sonar signals of free-ranging finless porpoises (Neophocaena phocaenoides). Acoustic observations, concurrent with visual observations, were conducted at two occasions on 20-22 October 2003 and 17-19 October 2004. During a total of 42 h of observation, 316 finless porpoises were sighted and 7041 sonar signals were recorded by loggers. The acoustic data loggers recorded ultrasonic signals of porpoises clearly, and detected the presence of porpoises with a correct detection level of 77.6% and a false alarm level of 5.8% within an effective distance of 150 m. Results indicated that the stationed passive acoustic observation method was effective in detecting the presence of porpoises and showed potential in estimating the group size. A positive linear correlation between the number of recorded signals and the group size of sighted porpoises was indicated, although it is faced with some uncertainty and requires further investigation.


Journal of the Acoustical Society of America | 2005

Evoked-potential audiogram of the Yangtze finless porpoise Neophocaena phocaenoides asiaeorientalis (L)

Vladimir V. Popov; Alexander Ya. Supin; Ding Wang; Kexiong Wang; Jianqiang Xiao; Songhai Li

Evoked-potential audiograms were obtained in two (one male and one female) Yangtze finless porpoises, Neophocaena phocaenoides asiaseorientalis. Sinusoidal amplitude-modulated 20-ms tone bursts were used as probes with recording envelope-following evoked potentials. A frequency range of 8 to 152 kHz was investigated. The range of greatest sensitivity covered frequencies from 45 to 139 kHz, and the lowest thresholds of 47.2 and 48.5 dB re: 1 μPa were found at a frequency of 54 kHz in the two subjects, respectively. At lower frequencies, threshold increased with a rate of around 14 dB/octave, and threshold steeply increased at 152 kHz.


The Journal of Experimental Biology | 2011

Dolphin hearing during echolocation: evoked potential responses in an Atlantic bottlenose dolphin (Tursiops truncatus)

Songhai Li; Paul E. Nachtigall; Marlee Breese

SUMMARY Auditory evoked potential (AEP) responses were recorded during echolocation in an Atlantic bottlenose dolphin (Tursiops truncatus) trained to accept suction-cup EEG electrodes and detect targets by echolocation. AEP recording was triggered by the echolocation clicks of the animal. Three targets with target strengths of –34, –28 and –22 dB were used at a target distance of 2 to 6.5 m for each target. The results demonstrated that the AEP appeared to both outgoing echolocation clicks and echoes during echolocation, with AEP complexes consisting of alternative positive and negative waves. The echo-related AEP amplitudes were obviously lower than the outgoing click-related AEP amplitudes for all the targets at the investigated target distances. However, for targets with target strengths of –22 and –28 dB, the peak-to-peak amplitudes of the echo-related AEPs were dependent on the target distances. The echo-related AEP response amplitudes increased at further target distances, demonstrating an overcompensation of echo attenuation with target distance in the echo-perception system of the dolphin biosonar. Measurement and analysis of outgoing click intensities showed that the click levels increased with target distance (R) by a factor of approximately 10 to 17.5 logR depending on target strength. The results demonstrated that a dual-component biosonar control system formed by intensity compensation behavior in both the transmission and receiving phases of a biosonar cycle exists synchronously in the dolphin biosonar system.


Journal of the Acoustical Society of America | 2010

Density estimation of Yangtze finless porpoises using passive acoustic sensors and automated click train detection

Satoko Kimura; Tomonari Akamatsu; Songhai Li; Shouyue Dong; Lijun Dong; Kexiong Wang; Ding Wang; Nobuaki Arai

A method is presented to estimate the density of finless porpoises using stationed passive acoustic monitoring. The number of click trains detected by stereo acoustic data loggers (A-tag) was converted to an estimate of the density of porpoises. First, an automated off-line filter was developed to detect a click train among noise, and the detection and false-alarm rates were calculated. Second, a density estimation model was proposed. The cue-production rate was measured by biologging experiments. The probability of detecting a cue and the area size were calculated from the source level, beam patterns, and a sound-propagation model. The effect of group size on the cue-detection rate was examined. Third, the proposed model was applied to estimate the density of finless porpoises at four locations from the Yangtze River to the inside of Poyang Lake. The estimated mean density of porpoises in a day decreased from the main stream to the lake. Long-term monitoring during 466 days from June 2007 to May 2009 showed variation in the density 0-4.79. However, the density was fewer than 1 porpoise/km(2) during 94% of the period. These results suggest a potential gap and seasonal migration of the population in the bottleneck of Poyang Lake.


The Journal of Experimental Biology | 2012

Evoked-potential audiogram of an Indo-Pacific humpback dolphin ( Sousa chinensis )

Songhai Li; Ding Wang; Kexiong Wang; Elizabeth A. Taylor; Emilie Cros; Wenjing Shi; Zhitao Wang; Liang Fang; Yuefei Chen; Fanming Kong

SUMMARY An evoked-potential audiogram was measured for an Indo-Pacific humpback dolphin (Sousa chinensis) living in the dolphinarium of Nanning Zoo, China. Rhythmic 20 ms pip trains composed of cosine-enveloped 0.25 ms tone pips at a pip rate of 1 kHz were presented as sound stimuli. The dolphin was trained to remain still at the water surface and to wear soft latex suction-cup EEG electrodes used to measure the animals envelope-following evoked potentials to the sound stimuli. Responses to 1000 rhythmic 20 ms pip trains for each amplitude/frequency combination were averaged and analysed using a fast Fourier transform to obtain an evoked auditory response. The hearing threshold was defined as the zero crossing point of the response input–output function using linear regression. Fourteen frequencies ranging from 5.6 to 152 kHz were studied. The results showed that most of the thresholds were lower than 90 dB re. 1 μPa (r.m.s.), covering a frequency range from 11.2 to 128 kHz, and the lowest threshold of 47 dB was measured at 45 kHz. The audiogram, which is a function of hearing threshold versus stimulus carrier frequency, presented a U-shape with a region of high hearing sensitivity (within 20 dB of the lowest threshold) between approximately 20 and 120 kHz. At frequencies lower than this high-sensitivity region, thresholds increased at a rate of approximately 11 dB octave–1 up to 93 dB at 5.6 kHz. The thresholds at high frequencies above 108 kHz increased steeply at a rate of 130 dB octave–1 up to 127 dB at 152 kHz.


Journal of the Acoustical Society of America | 2009

Localization and tracking of phonating finless porpoises using towed stereo acoustic data-loggers

Songhai Li; Tomonari Akamatsu; Ding Wang; Kexiong Wang

Cetaceans produce sound signals frequently. Usually, acoustic localization of cetaceans was made by cable hydrophone arrays and multichannel recording systems. In this study, a simple and relatively inexpensive towed acoustic system consisting of two miniature stereo acoustic data-loggers is described for localization and tracking of finless porpoises in a mobile survey. Among 204 porpoises detected acoustically, 34 individuals (approximately 17%) were localized, and 4 of the 34 localized individuals were tracked. The accuracy of the localization is considered to be fairly high, as the upper bounds of relative distance errors were less than 41% within 173 m. With the location information, source levels of finless porpoise clicks were estimated to range from 180 to 209 dB re 1 microPa pp at 1 m with an average of 197 dB (N=34), which is over 20 dB higher than that estimated previously from animals in enclosed waters. For the four tracked porpoises, two-dimensional swimming trajectories relative to the moving survey boat, absolute swimming speed, and absolute heading direction are deduced by assuming the animal movements are straight and at constant speed in the segment between two consecutive locations.


Journal of the Acoustical Society of America | 2006

Sonar gain control in echolocating finless porpoises (Neophocaena phocaenoides) in an open water

Songhai Li; Ding Wang; Kexiong Wang; Tomonari Akamatsu

Source levels of echolocating free-ranging Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis) were calculated using a range estimated by measuring the time delays of the signals via the surface and bottom reflection paths to the hydrophone, relative to the direct signal. Peak-to-peak source levels for finless porpoise were from 163.7 to 185.6 dB re: 1 microPa. The source levels are highly range, dependent and varied approximately as a function of the one-way transmission loss for signals traveling from the animals to the hydrophone.

Collaboration


Dive into the Songhai Li's collaboration.

Top Co-Authors

Avatar

Ding Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Kexiong Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Tomonari Akamatsu

National Agriculture and Food Research Organization

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lijun Dong

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shouyue Dong

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Mingli Lin

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Liang Fang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge