Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sonia Abad is active.

Publication


Featured researches published by Sonia Abad.


Neural Plasticity | 2016

Current Research Therapeutic Strategies for Alzheimer’s Disease Treatment

Jaume Folch; Dmitry Petrov; Miren Ettcheto; Sonia Abad; Elena Sánchez-López; M. Luisa García; Jordi Olloquequi; Carlos Beas-Zarate; Carme Auladell; Antoni Camins

Alzheimers disease (AD) currently presents one of the biggest healthcare issues in the developed countries. There is no effective treatment capable of slowing down disease progression. In recent years the main focus of research on novel pharmacotherapies was based on the amyloidogenic hypothesis of AD, which posits that the beta amyloid (Aβ) peptide is chiefly responsible for cognitive impairment and neuronal death. The goal of such treatments is (a) to reduce Aβ production through the inhibition of β and γ secretase enzymes and (b) to promote dissolution of existing cerebral Aβ plaques. However, this approach has proven to be only modestly effective. Recent studies suggest an alternative strategy centred on the inhibition of the downstream Aβ signalling, particularly at the synapse. Aβ oligomers may cause aberrant N-methyl-D-aspartate receptor (NMDAR) activation postsynaptically by forming complexes with the cell-surface prion protein (PrPC). PrPC is enriched at the neuronal postsynaptic density, where it interacts with Fyn tyrosine kinase. Fyn activation occurs when Aβ is bound to PrPC-Fyn complex. Fyn causes tyrosine phosphorylation of the NR2B subunit of metabotropic glutamate receptor 5 (mGluR5). Fyn kinase blockers masitinib and saracatinib have proven to be efficacious in treating AD symptoms in experimental mouse models of the disease.


Expert Review of Neurotherapeutics | 2015

Masitinib for the treatment of mild to moderate Alzheimer’s disease

Jaume Folch; Dmitry Petrov; Miren Ettcheto; Ignacio Pedrós; Sonia Abad; Carlos Beas-Zarate; Alberto Lazarowski; Miguel Marin; Jordi Olloquequi; Carme Auladell; Antoni Camins

Alzheimer’s disease (AD) is a degenerative neurological disorder that is the most common cause of dementia and disability in older patients. Available treatments are symptomatic in nature and are only sufficient to improve the quality of life of AD patients temporarily. A potential strategy, currently under investigation, is to target cell-signaling pathways associated with neurodegeneration, in order to decrease neuroinflammation, excitotoxicity, and to improve cognitive functions. Current review centers on the role of neuroinflammation and the specific contribution of mast cells to AD pathophysiology. The authors look at masitinib therapy and the evidence presented through preclinical and clinical trials. Dual actions of masitinib as an inhibitor of mast cell–glia axis and a Fyn kinase blocker are discussed in the context of AD pathology. Masitinib is in Phase III clinical trials for the treatment of malignant melanoma, mastocytosis, multiple myeloma, gastrointestinal cancer and pancreatic cancer. It is also in Phase II/III clinical trials for the treatment of multiple sclerosis, rheumatoid arthritis and AD. Additional research is warranted to better investigate the potential effects of masitinib in combination with other drugs employed in AD treatment.


Life Sciences | 2015

The role of leptin in the sporadic form of Alzheimer's disease. Interactions with the adipokines amylin, ghrelin and the pituitary hormone prolactin.

Jaume Folch; Iván Patraca; Nohora Martínez; Ignacio Pedrós; Dmitry Petrov; Miren Ettcheto; Sonia Abad; Miguel Marin; Carlos Beas-Zarate; Antoni Camins

Leptin (Lep) is emerging as a pivotal molecule involved in both the early events and the terminal phases of Alzheimers disease (AD). In the canonical pathway, Lep acts as an anorexigenic factor via its effects on hypothalamic nucleus. However, additional functions of Lep in the hippocampus and cortex have been unravelled in recent years. Early events in the sporadic form of AD likely involve cellular level alterations which can have an effect on food intake and metabolism. Thus, AD can be conceivably interpreted as a multiorgan pathology that not only results in a dramatic neuronal loss in brain areas such as the hippocampus and the cortex (ultimately leading to a significant cognitive impairment) but as a disease which also affects body-weight homeostasis. According to this view, body-weight control disruptions are to be expected in both the early- and late-stage AD, concomitant with changes in serum Lep content, alterations in Lep transport across the blood-brain barrier (BBB) and Lep receptor-related signalling abnormalities. Lep is a member of the adipokine family of molecules, while the Lep receptor belongs to the class I cytokine receptors. Since cellular response to adipokine signalling can be either potentiated or diminished as a result of specific ligand-receptor interactions, Lep interactions with other members of the adipokine family including amylin, ghrelin and hormones such as prolactin require further investigation. In this review, we provide a general perspective on the functions of Lep in the brain, with a particular focus on the sporadic AD.


Psychopharmacology | 2014

MDMA enhances hippocampal-dependent learning and memory under restrictive conditions, and modifies hippocampal spine density

Sonia Abad; Alberto Fole; Nuria del Olmo; David Pubill; Mercè Pallàs; Felix Junyent; Jorge Camarasa; A. Camins; Elena Escubedo

ObjectivesAddictive drugs produce forms of structural plasticity in the nucleus accumbens and prefrontal cortex. The aim of this study was to investigate the impact of chronic MDMA exposure on pyramidal neurons in the CA1 region of hippocampus and drug-related spatial learning and memory changes.Methods and resultsAdolescent rats were exposed to saline or MDMA in a regime that mimicked chronic administration. One week later, when acquisition or reference memory was evaluated in a standard Morris water maze (MWM), no differences were obtained between groups. However, MDMA-exposed animals performed better when the MWM was implemented under more difficult conditions. Animals of MDMA group were less anxious and were more prepared to take risks, as in the open field test they ventured more frequently into the central area. We have demonstrated that MDMA caused an increase in brain-derived neurotrophic factor (BDNF) expression. When spine density was evaluated, MDMA-treated rats presented a reduced density when compared with saline, but overall, training increased the total number of spines, concluding that in MDMA-group, training prevented a reduction in spine density or induced its recovery.ConclusionsThis study provides support for the conclusion that binge administration of MDMA, known to be associated to neurotoxic damage of hippocampal serotonergic terminals, increases BDNF expression and stimulates synaptic plasticity when associated with training. In these conditions, adolescent rats perform better in a more difficult water maze task under restricted conditions of learning and memory. The effect on this task could be modulated by other behavioural changes provoked by MDMA.


Journal of Nutrition Health & Aging | 2015

Adipokine pathways are altered in hippocampus of an experimental mouse model of Alzheimer's disease.

Ignacio Pedrós; Dmitry Petrov; G. Artiach; Sonia Abad; C. Ramon-Duaso; Francesc X. Sureda; Mercè Pallàs; Carlos Beas-Zarate; Jaume Folch; Antoni Camins

A growing body of evidence suggests that β-amyloid peptides (Aβ) are unlikely to be the only factor involved in Alzheimer’s disease (AD) aetiology. In fact, a strong correlation has been established between AD patients and patients with type 2 diabetes and/or cholesterol metabolism alterations. In addition, a link between adipose tissue metabolism, leptin signalling in particular, and AD has also been demonstrated. In the present study we analyzed the expression of molecules related to metabolism, with the main focus on leptin and prolactin signalling pathways in an APPswe/PS1dE9 (APP/PS1) transgenic mice model, at 3 and 6 months of age, compared to wild-type controls. We have chosen to study 3 months-old APP/PS1 animals at an age when neither the cognitive deficits nor significant Aβ plaques in the brain are present, and to compare them to the 6 months-old mice, which exhibit elevated levels of Aβ in the hippocampus and memory loss. A significant reduction in both mRNA and protein levels of the prolactin receptor (PRL-R) was detected in the hippocampi of 3 months old APP/PS1 mice, with a decrease in the levels of the leptin receptor (OB-R) first becoming evident at 6 months of age. We proceeded to study the expression of the intracellular signalling molecules downstream of these receptors, including stat (1–5), sos1, kras and socs (1–3). Our data suggest a downregulation in some of these molecules such as stat-5b and socs (1–3), in 3 months-old APP/PS1 brains. Likewise, at the same age, we detected a significant reduction in mRNA levels of lrp1 and cyp46a1, both of which are involved in cholesterol homeostasis. Taken together, these results demonstrate a significative impairment in adipokine receptors signalling and cholesterol regulation pathways in the hippocampus of APP/PS1 mice at an early age, prior to the Aβ plaque formation.


Neurologia | 2018

Una revisión de los avances en la terapéutica de la enfermedad de Alzheimer: estrategia frente a la proteína β-amiloide

Jaume Folch; Miren Ettcheto; Dmitry Petrov; Sonia Abad; I. Pedrós; M. Marin; J. Olloquequi; Antoni Camins

INTRODUCTION Alzheimer disease (AD) is a major neurodegenerative disorder which eventually results in total intellectual disability. The high global prevalence and the socioeconomic burden associated with the disease pose major challenges for public health in the 21st century. In this review we focus on both existing treatments and the therapies being developed, which principally target the β-amyloid protein. DISCUSSION The amyloidogenic hypothesis proposes that β-amyloid plays a key role in AD. Several pharmacological approaches aim to reduce the formation of β-amyloid peptides by inhibiting the β-secretase and γ-secretase enzymes. In addition, both passive and active immunotherapies have been developed for the purpose of inhibiting β-amyloid peptide aggregation. CONCLUSIONS Progress in identifying the molecular basis of AD may provide better models for understanding the causes of this neurodegenerative disease. The lack of efficacy of solanezumab (a humanised monoclonal antibody that promotes β-amyloid clearance in the brain), demonstrated by 2 recent Phase III clinical trials in patients with mild AD, suggests that the amyloidogenic hypothesis needs to be revised.


Progress in Neuro-psychopharmacology & Biological Psychiatry | 2014

3,4-Methylenedioxymethamphetamine enhances kainic acid convulsive susceptibility

Sonia Abad; Felix Junyent; Carme Auladell; David Pubill; Mercè Pallàs; Jorge Camarasa; Elena Escubedo; A. Camins

Kainic acid (KA) causes seizures and neuronal loss in the hippocampus. The present study investigated whether a recreational schedule of 3,4-methylenedioxymethamphetamine (MDMA) favours the development of a seizure state in a model of KA-induced epilepsy and potentiates the toxicity profile of KA (20 or 30mg/kg). Adolescent male C57BL/6 mice received saline or MDMA t.i.d. (s.c. every 3h), on 1day a week, for 4 consecutive weeks. Twenty-four hours after the last MDMA exposure, the animals were injected with saline or KA (20 or 30mg/kg). After this injection, we evaluated seizures, hippocampal neuronal cell death, microgliosis, astrogliosis, and calcium binding proteins. MDMA pretreatment, by itself, did not induce neuronal damage but increased seizure susceptibility in all KA treatments and potentiated the presence of Fluoro-Jade-positive cells in CA1. Furthermore, MDMA, like KA, significantly decreased parvalbumin levels in CA1 and dentate gyrus, where it potentiated the effects of KA. The amphetamine derivative also promoted a transient decrease in calbindin and calretinin levels, indicative of an abnormal neuronal discharge. In addition, treatment of cortical neurons with MDMA (10-50μM) for 6 or 48h significantly increased basal Ca(2+), reduced basal Na(+) levels and potentiated kainate response. These results indicate that MDMA potentiates KA-induced neurodegeneration and also increases KA seizure susceptibility. The mechanism proposed includes changes in Calcium Binding Proteins expression, probably due to the disruption of intracellular ionic homeostasis, or/and an indirect effect through glutamate release.


Biochimica et Biophysica Acta | 2016

Adolescent exposure to MDMA induces dopaminergic toxicity in substantia nigra and potentiates the amyloid plaque deposition in the striatum of APPswe/PS1dE9 mice

Sonia Abad; Carla Ramon; David Pubill; Jorge Camarasa; A. Camins; Elena Escubedo

MDMA is one of the most used drugs by adolescents and its consumption has been associated with many psychobiological problems, among them psychomotor problems. Moreover, some authors described that early exposure to MDMA may render the dopaminergic neurons more vulnerable to the effects of future neurotoxic insults. Alzheimer disease (AD) is the main cause of dementia in the elderly and a percentage of the patients have predisposition to suffer nigrostriatal alterations, developing extrapyramidal signs. Nigrostriatal dysfunction in the brain of aged APPswe/PS1dE9 (APP/PS1), a mouse model of familiar AD (FAD), has also been described. The aim of the present study was to investigate the consequences of adolescent exposure to MDMA in APP/PS1 mice, on nigrostriatal function on early adulthood. We used a MDMA schedule simulating weekend binge abuse of this substance. Our MDMA schedule produced a genotype-independent decrease in dopaminergic neurons in the substantia nigra that remained at least 3months. Shortly after the injury, wild-type animals showed a decrease in the locomotor activity and apparent DA depletion in striatum, however in the APP/PS1 mice neither the locomotor activity nor the DA levels were modified, but a reduction in dopamine transporter (DAT) expression and a higher levels of oxidative stress were observed. We found that these disturbances are age-related characteristics that this APP/PS1 mice develops spontaneously much later. Therefore, MDMA administration seems to anticipate the striatal dopaminergic dysfunction in this FAD model. The most important outcome lies in a potentiation, by MDMA, of the amyloid beta deposition in the striatum.


PLOS ONE | 2014

Dose and time-dependent selective neurotoxicity induced by mephedrone in mice.

José Martínez-Clemente; Raúl López-Arnau; Sonia Abad; David Pubill; Elena Escubedo; Jorge Camarasa


Neurochemistry International | 2011

Comparative neurochemical profile of 3,4-methylenedioxymethamphetamine and its metabolite alpha-methyldopamine on key targets of MDMA neurotoxicity.

Elena Escubedo; Sonia Abad; I. Torres; Jordi Camarasa; David Pubill

Collaboration


Dive into the Sonia Abad's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Pubill

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jaume Folch

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge