Sónia C. Correia
University of Coimbra
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sónia C. Correia.
Journal of Alzheimer's Disease | 2009
S. Cardoso; Sónia C. Correia; Renato X. Santos; Cristina Carvalho; Maria S. Santos; Catarina R. Oliveira; George Perry; Mark A. Smith; Xiongwei Zhu; Paula I. Moreira
Insulin, long known as an important regulator of blood glucose levels, plays important and multifaceted roles in the brain. It has been reported that insulin is an important neuromodulator, contributing to several neurobiological processes in particular energy homeostasis and cognition. Dysregulation of insulin signaling has been linked to aging and metabolic and neurodegenerative disorders. The first part of this review is devoted to discussion of the critical role of insulin signaling in normal brain function. Then the involvement of impaired insulin signaling in the pathophysiology of diabetes, Alzheimers, Parkinsons and Huntingtons diseases and amyotrophic lateral sclerosis will be discussed. Finally, the potential therapeutic effect of insulin and insulin sensitizers will be examined.
Brain Research | 2012
Sónia C. Correia; Renato X. Santos; Cristina Carvalho; S. Cardoso; Emanuel Candeias; Maria S. Santos; Catarina R. Oliveira; Paula I. Moreira
Many epidemiological studies have shown that diabetes, particularly type 2 diabetes, significantly increases the risk to develop Alzheimers disease. Both diseases share several common abnormalities including impaired glucose metabolism, increased oxidative stress, insulin resistance and deposition of amyloidogenic proteins. It has been suggested that these two diseases disrupt common cellular and molecular pathways and each disease potentiates the progression of the other. This review discusses clinical and biochemical features shared by Alzheimers disease and diabetes, giving special attention to the involvement of insulin signaling, glucose metabolism and mitochondria. Understanding the key mechanisms underlying this deleterious interaction may provide opportunities for the design of effective therapeutic strategies.
Journal of Alzheimer's Disease | 2010
Renato X. Santos; Sónia C. Correia; Xinglong Wang; George Perry; Mark A. Smith; Paula I. Moreira; Xiongwei Zhu
Alzheimers disease (AD), the most common form of dementia in the elderly, can have a late-onset sporadic or an early-onset familial origin. In both cases, the neuropathological hallmarks are the same: senile plaques and neurofibrillary tangles. Despite AD having a proteinopathic nature, there is strong evidence for an organelle dysfunction-related neuropathology, namely dysfunctional mitochondria. In this regard, dysfunctional mitochondria and associated exacerbated generation of reactive oxygen species are among the earliest events in the progression of the disease. Since the maintenance of a healthy mitochondrial pool is essential given the central role of this organelle in several determinant cellular processes, mitochondrial dysfunction in AD would be predicted to have profound pluripotent deleterious consequences. Mechanistically, recent reports suggest that mitochondrial fission/fusion and mitophagy are altered in AD and in in vitro models of disease, and since both processes are reported to be protective, this review will discuss the role of mitochondrial fission/fusion and mitophagy in the pathogenesis of AD.
Journal of Neurochemistry | 2010
Sónia C. Correia; Paula I. Moreira
J. Neurochem. (2010) 112, 1–12.
Diabetes | 2012
Cristina Carvalho; S. Cardoso; Sónia C. Correia; Renato X. Santos; Maria S. Santos; Inês Baldeiras; Catarina R. Oliveira; Paula I. Moreira
Evidence shows that diabetes increases the risk of developing Alzheimer’s disease (AD). Many efforts have been done to elucidate the mechanisms linking diabetes and AD. To demonstrate that mitochondria may represent a functional link between both pathologies, we compared the effects of AD and sucrose-induced metabolic alterations on mouse brain mitochondrial bioenergetics and oxidative status. For this purpose, brain mitochondria were isolated from wild-type (WT), triple transgenic AD (3xTg-AD), and WT mice fed 20% sucrose-sweetened water for 7 months. Polarography, spectrophotometry, fluorimetry, high-performance liquid chromatography, and electron microscopy were used to evaluate mitochondrial function, oxidative status, and ultrastructure. Western blotting was performed to determine the AD pathogenic protein levels. Sucrose intake caused metabolic alterations like those found in type 2 diabetes. Mitochondria from 3xTg-AD and sucrose-treated WT mice presented a similar impairment of the respiratory chain and phosphorylation system, decreased capacity to accumulate calcium, ultrastructural abnormalities, and oxidative imbalance. Interestingly, sucrose-treated WT mice presented a significant increase in amyloid β protein levels, a hallmark of AD. These results show that in mice, the metabolic alterations associated to diabetes contribute to the development of AD-like pathologic features.
Medicinal Chemistry | 2008
Sónia C. Correia; Cristina Carvalho; Maria S. Santos; Teresa Proença; Elsa Nunes; Ana I. Duarte; Pedro Monteiro; Raquel Seiça; Catarina R. Oliveira; Paula I. Moreira
We aimed to investigate whether metformin protects the brain against the oxidative imbalance promoted by type 2 diabetes. This study analyzed the effect of metformin on oxidative stress markers (thiobarbituric acid reactive substances (TBARS), malondialdehyde (MDA) and carbonyl groups), hydrogen peroxide (H(2)O(2)) levels, non-enzymatic antioxidant defenses [reduced (GSH) and oxidized (GSSG) glutathione and vitamin E] and enzymatic antioxidant defenses [glutathione peroxidase (GPx), glutathione reductase (GRed) and manganese superoxide dismutase (MnSOD)] in brain homogenates of diabetic GK rats, a model of type 2 diabetes. For this purpose we compared brain homogenates obtained from untreated GK rats versus GK rats treated with metformin during a period of 4 weeks. Brain homogenates obtained from Wistar rats were used as control. The MDA levels, GPx and GRed activities are significantly higher in untreated GK rats, while TBARS levels, carbonyl groups, glutathione content and vitamin E levels remain statistically unchanged when compared with control rats. In contrast, MnSOD activity and the levels of H(2)O(2) are significantly decreased in untreated GK rats when compared with control animals. However, metformin treatment normalized the majority of the parameters altered by diabetes. We observed that metformin, besides its antihyperglycemic action, induces a significant decrease in TBARS and MDA levels, GPx and GRed activities and a significant increase in GSH levels and MnSOD activity. These results indicate that metformin protects against diabetes-associated oxidative stress suggesting that metformin could be an effective neuroprotective agent.
Antioxidants & Redox Signaling | 2013
Renato X. Santos; Sónia C. Correia; Xiongwei Zhu; Mark A. Smith; Paula I. Moreira; Rudy J. Castellani; Akihiko Nunomura; George Perry
SIGNIFICANCE Mitochondria are fundamental to the life and proper functioning of cells. These organelles play a key role in energy production, in maintaining homeostatic levels of second messengers (e.g., reactive oxygen species and calcium), and in the coordination of apoptotic cell death. The role of mitochondria in aging and in pathophysiological processes is constantly being unraveled, and their involvement in neurodegenerative processes, such as Alzheimers disease (AD), is very well known. RECENT ADVANCES A considerable amount of evidence points to oxidative damage to mitochondrial DNA (mtDNA) as a determinant event that occurs during aging, which may cause or potentiate mitochondrial dysfunction favoring neurodegenerative events. Concomitantly to reactive oxygen species production, an inefficient mitochondrial base excision repair (BER) machinery has also been pointed to favor the accumulation of oxidized bases in mtDNA during aging and AD progression. CRITICAL ISSUES The accumulation of oxidized mtDNA bases during aging increases the risk of sporadic AD, an event that is much less relevant in the familial forms of the disease. This aspect is critical for the interpretation of data arising from tissue of AD patients and animal models of AD, as the major part of animal models rely on mutations in genes associated with familial forms of the disease. FUTURE DIRECTIONS Further investigation is important to unveil the role of mtDNA and BER in aging brain and AD in order to design more effective preventive and therapeutic strategies.
Biochimica et Biophysica Acta | 2014
Ana I. Plácido; Cláudia Pereira; Ana I. Duarte; Emanuel Candeias; Sónia C. Correia; Renato X. Santos; Cristina Carvalho; Sandra M. Cardoso; Catarina R. Oliveira; Paula I. Moreira
The endoplasmic reticulum (ER) is the principal organelle responsible for the proper folding/processing of nascent proteins and perturbed ER function leads to a state known as ER stress. Mammalian cells try to overcome ER stress through a set of protein signaling pathways and transcription factors termed the unfolded protein response (UPR). However, under unresolvable ER stress conditions, the UPR is hyperactivated inducing cell dysfunction and death. The accumulation of misfolded proteins in the brain of Alzheimers disease (AD) patients suggests that alterations in ER homeostasis might be implicated in the neurodegenerative events that characterize this disorder. This review discusses the involvement of ER stress in the pathogenesis of AD, focusing the processing and trafficking of the AD-related amyloid precursor protein (APP) during disease development. The potential role of ER as a therapeutic target in AD will also be debated.
Mini-reviews in Medicinal Chemistry | 2008
Sónia C. Correia; Cristina Carvalho; Maria S. Santos; Raquel Seiça; Catarina R. Oliveira; Paula I. Moreira
Type 2 diabetes is a major health problem associated with excess mortality and morbidity. Vascular complications are one of the most serious consequences of this disorder. Moreover, type 2 diabetes is also a risk factor for cerebral complications, including cognitive impairment and dementia. However, it has been shown that tight glycemic control contributes to reduce the incidence of diabetes-associated complications. Metformin is a potent antihyperglycemic agent widely used in the management of type 2 diabetes whose main actions are the suppression of gluconeogenesis and the improvement of glucose uptake and insulin sensitivity. This review is mainly devoted to describe the mechanisms of action underlying the antidiabetic effects of metformin. Furthermore, we will present evidence for the protective effects of metformin against diabetes-associated complications mainly cerebral and vascular complications. Finally, we will describe the few known side effects associated to this antidiabetic agent.
Current Alzheimer Research | 2013
Sónia C. Correia; Renato X. Santos; Maria S. Santos; Gemma Casadesus; Joseph C. LaManna; George Perry; Mark A. Smith; Paula I. Moreira
This study aimed to show that the rat model of sporadic Alzheimers disease (sAD) generated by the intracerebroventricular (icv) injection of a sub-diabetogenic dose of streptozotocin (icvSTZ) is characterized by brain mitochondrial abnormalities. Three-month-old male Wistar rats were investigated 5 weeks after a single bilateral icv injection of STZ (3 mg/ Kg) or vehicle. icvSTZ administration induced a decrease in brain weight and cognitive decline, without affecting blood glucose levels. icvSTZ administration also resulted in a significant increase in hippocampal amyloid beta peptide 1-42 (Aβ(1-42)) levels as well as in cortical and hippocampal hyperphosphorylated tau protein levels. Brain mitochondria from icvSTZ rats revealed deficits in their function, as shown by a decrease in mitochondrial transmembrane potential, repolarization level, ATP content, respiratory state 3, respiratory control ratio and ADP/O index and an increase in lag phase of repolarization. Mitochondria from icvSTZ rats also displayed a decrease in pyruvate and α-ketoglutarate dehydrogenases and cytochrome c oxidase activities and an increase in the susceptibility to calcium-induced mitochondrial permeability transition. An increase in hydrogen peroxide and lipid peroxidation levels and a reduction in glutathione content were also observed in mitochondria from icvSTZ rats. These results demonstrate that the insulin-resistant brain state that characterizes this rat model of sAD is accompanied by the occurrence of mitochondrial abnormalities reinforcing the validity of this animal model to study sAD pathogenesis and potential therapies.