Sonia Gómez
Academia Nacional de Medicina
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sonia Gómez.
European Journal of Immunology | 2003
Carolina Rubel; Sonia Gómez; Gabriela C. Fernández; Martín A. Isturiz; Jorge Caamano; Marina S. Palermo
The regulation of neutrophil half‐life by members of the coagulation cascade is critical for the resolution of the inflammatory response. We have demonstrated that soluble fibrinogen (sFbg) delays human neutrophil (PMN) apoptosis through a mechanism that involves CD11b interactions, and phosphorylation of focal adhesion kinase (FAK) and extracellular signal‐regulated kinase 1/2 (ERK1/2).Since NF‐κB is a key element in the regulation of apoptotic mechanisms in several immune cells, we investigated whether NF‐κB is involved in the control of PMN survival by sFbg. We showthat sFbg triggers inhibitor protein κB (IκB‐α) degradation and NF‐κB activation. Furthermore, pharmacological inhibition of NF‐κB abrogates sFbg effects on apoptosis. In addition, specific inhibition of MAPK ERK1/2 significantly reduces NF‐κB translocation by sFbg, suggesting a relationship between ERK1/2 and NF‐κB activation. Similar results are obtained when granulocytic‐differentiated HL‐60 cells are treated with sFbg, making this model highly attractive for integrin‐induced gene expression studies. It can be concluded that NF‐κB participates in the prevention of apoptosis induced by sFbg with the participation of MAPK ERK1/2. These results shed light on the molecular mechanisms that control human granulocyte apoptosis, and suggest that NF‐κB regulation may be of benefit for the resolution of the inflammatory response.
Journal of Immunology | 2002
Carolina Rubel; Gabriela C. Fernández; Fernanda Alves Rosa; Sonia Gómez; Macarena Beigier Bompadre; Omar A. Coso; Martín A. Isturiz; Marina S. Palermo
The integrin family not only mediates the recruitment of polymorphonuclear leukocytes (PMN) to sites of inflammation but also regulates several effector functions by binding to specific ligands. We have recently demonstrated that soluble fibrinogen (sFbg) is able to trigger an activating signal in PMN through an integrin-dependent mechanism. This activation results in degranulation, phagocytosis enhancement, and apoptosis delay. The aim of the present work was to further elucidate the molecular events that follow sFbg interaction with CD11b in human PMN, and the participation of this signaling pathway in the regulation of neutrophil functionality. We demonstrate that sFbg triggers a cascade of intracellular signals that lead to focal adhesion kinase and extracellular signal-regulated kinase 1/2 tyrosine phosphorylation. The activation of this mitogen-activated protein kinase pathway plays a central role in the sFbg modulation of secondary granule degranulation, Ab-dependent phagocytosis, and apoptosis. However, fibrinogen-induced secretory vesicle degranulation occurs independently of the signaling transduction pathways investigated herein. In the context of an inflammatory process, the intracellular signal pathway activated by sFbg may be an early event influencing the functionality of PMN.
Pediatric Nephrology | 2005
Gabriela C. Fernández; Sonia Gómez; Carolina Rubel; Leticia V. Bentancor; Paula Barrionuevo; Marta Alduncín; Irene Grimoldi; Ramón Exeni; Martín A. Isturiz; Marina S. Palermo
Experimental and clinical evidence suggest that activated neutrophils (PMN) could contribute to endothelial damage in Hemolytic Uremic Syndrome (D+HUS). Additionally, while PMN-activating cytokines and PMN-derived products have been found in D+HUS sera, we have demonstrated phenotypic alterations in D+HUS PMN compatible with a deactivation state. Here, we investigated whether D+HUS PMN were actually hyporesponsive, and explored some of the mechanisms probably involved in their derangement. Twenty-two D+HUS children were bled in the acute period, and blood samples from healthy, acute uremic and neutrophilic children were obtained as controls. We evaluated degranulation markers in response to cytokines, intracellular granule content, and reactive oxygen species (ROS) generation in circulating D+HUS and control PMN. The influence of D+HUS-derived plasma and the direct effects of Stx in vitro were evaluated on healthy donors’ PMN. We found that D+HUS PMN presented reduced degranulatory capacity in response to cytokines and intracellular granule content, and decreased ROS generation. D+HUS plasma or Stx did not affect the phenotype and function of healthy donors’ PMN. These results suggest that upon hospitalization D+HUS PMN are functionally impaired and show features of previous degranulation, indicating a preceding process of activation with release of ROS and proteases involved in endothelial damage.
Journal of Leukocyte Biology | 2005
Gabriela C. Fernández; María Victoria Ramos; Sonia Gómez; Graciela I. Dran; Ramón Exeni; Marta Alduncín; Irene Grimoldi; Graciela Vallejo; Christian Elías-Costa; Martín A. Isturiz; Marina S. Palermo
Monocytes (Mo) mediate central functions in inflammation and immunity. Different subpopulations of Mo with distinct phenotype and functional properties have been described. Here, we investigate the phenotype and function of peripheral Mo from children with hemolytic uremic syndrome (HUS). For this purpose, blood samples from patients in the acute period of HUS (HUS AP) were obtained on admission before dialysis and/or transfusion. The Mo phenotypic characterization was performed on whole blood by flow cytometry, and markers associated to biological functions were selected: CD14 accounting for lipopolysaccharide (LPS) responsiveness, CD11b for adhesion, Fc receptor for immunoglobulin G type I (FcγRI)/CD64 for phagocytosis and cytotoxicity, and human leukocyte antigen (HLA)‐DR for antigen presentation. Some of these functions were also determined. Moreover, the percentage of CD14+ CD16+ Mo was evaluated. We found that the entire HUS AP Mo population exhibited reduced CD14, CD64, and CD11b expression and decreased LPS‐induced tumor necrosis factor production and Fcγ‐dependent cytotoxicity. HUS AP showed an increased percentage of CD14+ CD16+ Mo with higher CD16 and lower CD14 levels compared with the same subset from healthy children. Moreover, the CD14++ CD16– Mo subpopulation of HUS AP had a decreased HLA‐DR expression, which correlated with severity. In conclusion, the Mo population from HUS AP patients presents phenotypic and functional alterations. The contribution to the pathogenesis and the possible scenarios that led to these changes are discussed.
Clinical and Experimental Immunology | 2006
Gabriela C. Fernández; M. F. Lopez; Sonia Gómez; María Victoria Ramos; Leticia V. Bentancor; R. J. Fernandez-Brando; Verónica I. Landoni; Graciela I. Dran; Roberto Meiss; M. A. Isturiz; Marina S. Palermo
It has been demonstrated that infections due to Shiga toxins (Stx) producing Escherichia coli are the main cause of the haemolytic uraemic syndrome (HUS). However, the contribution of the inflammatory response in the pathogenesis of the disease has also been well established. Neutrophils (PMN) represent a central component of inflammation during infections, and patients with high peripheral PMN counts at presentation have a poor prognosis. The mouse model of HUS, by intravenous injection of pure Stx type 2 (Stx2), reproduces human neutrophilia and allows the study of early events in the course of Stx2‐induced pathophysiological mechanisms. The aim of this study was to address the contribution of PMN on Stx2 toxicity in a murine model of HUS, by evaluating the survival and renal damage in mice in which the granulocytic population was depleted. We found that the absence of PMN reduced Stx2‐induced lethal effects and renal damage. We also investigated the mechanisms underlying Stx2‐induced neutrophilia, studying the influence of Stx2 on myelopoyesis, on the emergence of cells from the bone marrow and on the in vivo migration into tissues. Stx2 administration led to an accelerated release of bone marrow cells, which egress at an earlier stage of maturation, together with an increase in the proliferation of myeloid progenitors. Moreover, Stx2‐treated mice exhibited a lower migratory capacity to a local inflammatory site. In conclusion, PMN are essential in the pathogenesis of HUS and neutrophilia is not merely an epiphenomenon, but contributes to Stx2‐damaging mechanism by potentiating Stx2 toxicity.
Infection and Immunity | 2003
Alejandra V. E. Capozzo; Virginia Pistone Creydt; Graciela I. Dran; Gabriela C. Fernández; Sonia Gómez; Leticia V. Bentancor; Carolina Rubel; Cristina Ibarra; Martín A. Isturiz; Marina S. Palermo
ABSTRACT Shiga toxin type 2 (Stx2) produced by Escherichia coli O:157H7 can cause hemolytic-uremic syndrome in children, a disease for which there is neither a vaccine nor an effective treatment. This toxin consists of an enzymatically active A subunit and a pentameric B subunit responsible for the toxin binding to host cells, and also found to be immunogenic in rabbits. In this study we developed eukaryotic plasmids expressing the B subunit gene of Stx2 (pStx2B) and the B subunit plus the gene coding for the A subunit with an active-site deletion (pStx2ΔA). Transfection of eukaryotic cells with these plasmids produced proteins of the expected molecular weight which reacted with specific monoclonal antibodies. Newborn and adult BALB/c mice immunized with two intramuscular injections of each plasmid, either alone or together with the same vector expressing the granulocyte and monocyte colony-stimulating factor (pGM-CSF), elicited a specific Th1-biased humoral response. The effect of pGM-CSF as an adjuvant plasmid was particularly notable in newborn mice and in pStx2B-vaccinated adult mice. Stx2-neutralizing activity, evaluated in vitro on VERO cell monolayers, correlated with in vivo protection. This is the first report using plasmids to induce a neutralizing humoral immune response against the Stx2.
Pediatric Research | 2007
Gabriela C. Fernández; Sonia Gómez; María Victoria Ramos; Leticia V. Bentancor; Romina Jimena Fernandez-Brando; Verónica I. Landoni; Laura Lopez; Flavia Ramirez; Mario Diaz; Marta Alduncín; Irene Grimoldi; Ramón Exeni; Martín A. Isturiz; Marina S. Palermo
Hemolytic Uremic Syndrome (HUS) is the main cause of acute renal failure in children. The high percentage of patients who develop long-term sequelae constitutes an important medical concern. The identification of parameters that correlate with the degree of renal failure may be useful to plan the best treatment soon after hospitalization. Here, we investigated the functional state of neutrophils (PMN) from HUS patients on admission, before dialysis and/or transfusion, in relation to the severity of renal impairment reached during the acute period (AP). We found that all PMN activation parameters measured in severe cases of HUS (HUS AP3) were statistically lower comparing to children with mild cases of HUS (HUS AP1). As HUS PMN phenotype and dysfunction is compatible with that of cells undergoing cell death, we also studied spontaneous apoptosis. Not only were HUS PMN not apoptotic, but HUS AP3 PMN showed an increased survival. Almost all phenotypic and functional parameters measured on PMN correlated with severity. Our results revealed a marked deactivation of PMN in severe cases of HUS, and suggest that studying the functional state of PMN could be of prognostic value.
Clinical and Experimental Immunology | 2003
Sonia Gómez; Gabriela C. Fernández; Silvia Vanzulli; G. Dran; Carolina Rubel; T. Berki; M. A. Isturiz; Marina S. Palermo
The concept that during an immune challenge the release of glucocorticoids (GC) provides feedback inhibition on evolving immune responses has been drawn primarily from studies of autoimmune and/or inflammatory processes in animal models. The epidemic form of haemolytic uraemic syndrome (HUS) occurs secondary to infection with Gram‐negative bacteria that produce Shiga toxin (Stx). Although Stx binding to the specific receptors present on renal tissue is the primary pathogenic mechanism, inflammatory or immune interactions are necessary for the development of the complete form of HUS. The aim of this study was to investigate the influence of endogenous GC on Stx‐toxicity in a mouse model. Stx2 was injected into GC‐deprived mice and survival rate, renal damage and serum urea levels were evaluated. Plasma corticosterone and cytosolic GC receptor (GR) concentration were also determined at multiple intervals post‐Stx2 treatment. Higher sensitivity to Stx2 was observed in mice lacking endogenous GC, evidenced by an increase in mortality rates, circulating urea levels and renal histological damage. Moreover, Stx2 injection was associated with a transient but significant rise in corticosterone secretion. Interestingly, 24 h after Stx inoculation significant increases in total GR were detected in circulating neutrophils. These results indicate that interactions between the neuroendocrine and immune systems can modulate the level of damage significantly during a bacterial infection.
Clinical and Experimental Immunology | 2003
Paula Barrionuevo; Macarena Beigier-Bompadre; Gabriela C. Fernández; Sonia Gómez; M. F. Alves‐Rosa; Marina S. Palermo; Martín A. Isturiz
The interaction between receptors for the Fc portion of IgG (FcγRs) from monocytes/macrophages and immune complexes (IC) triggers regulatory and effector functions. Recently, we have demonstrated that IC exert a drastic inhibition of basal and IFN‐γ‐induced expression of MHC class II on human monocytes. Taking into account that the regulation of MHC class II molecules is a crucial event in the immune response, in this report we extend our previous studies analysing the effect of STAT‐1 phosphorylation in the down‐regulatory process, the fate of the intracellular pool of MHC class II molecules and the effect of complement on MHC class II down‐regulation induced by IC. We also studied the effect of IC on the expression of MHC class II (I‐Ad) in macrophages using a mouse model of chronic inflammation. We demonstrate that IC induce a depletion not only on surface expressed but also on intracellular MHC class II content and that IC‐induced down‐regulation of MHC class II is not mediated by the inhibition of STAT‐1 phosphorylation. On the other hand, the effect of IC is not specific for the down‐regulation of MHC class II, for it could be restricted to other molecules involved in inflammatory processes. Our experiments also show that the activation of the complement system could be a crucial step on the regulation of the effect of IC on MHC class II expression. In agreement with our in vitro experiments using human monocytes, IC treatment reduces the expression of MHC class II in a mouse model of chronic inflammation.
Infection and Immunity | 2011
Gabriela Barrera; Verónica I. Landoni; Daiana Martire-Greco; Paula Chiarella; Roberto Meiss; Sonia Gómez; Fernanda Alves-Rosa; Bárbara Rearte; Martín A. Isturiz; Marina S. Palermo; Gabriela C. Fernández
ABSTRACT Severe sepsis is associated with early release of inflammatory mediators that contribute to the morbidity and mortality observed during the first stages of this syndrome. Although sepsis is a deadly, acute disease, high mortality rates have been observed in patients displaying evidence of sepsis-induced immune deactivation. Although the contribution of experimental models to the knowledge of pathophysiological and therapeutic aspects of human sepsis is undeniable, most of the current studies using animal models have focused on the acute, proinflammatory phase. We developed a murine model that reproduces the early acute phases but also the long-term consequences of human sepsis. We induced polymicrobial acute peritonitis (AP) by establishing a surgical connection between the cecum and the peritoneum, allowing the exit of intestinal bacteria. Using this model, we observed an acute phase with high mortality, leukopenia, increased interleukin-6 levels, bacteremia, and neutrophil activation. A peak of leukocytosis on day 9 or 10 revealed the persistence of the infection within the lung and liver, with inflammatory hepatic damage being shown by histological examination. Long-term (20 days) derangements in both innate and adaptive immune responses were found, as demonstrated by impaired systemic tumor necrosis factor alpha production in response to an inflammatory stimulus; a decreased primary humoral immune response and T cell proliferation, associated with an increased number of myeloid suppressor cells (Gr-1+ CD11b+) in the spleen; and a low clearance capacity. This model provides a good approach to attempt novel therapeutic interventions directed to augmenting host immunity during late sepsis.