Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sónia Gonçalves is active.

Publication


Featured researches published by Sónia Gonçalves.


Frontiers in Microbiology | 2014

Defensins: antifungal lessons from eukaryotes

Patrícia M. Silva; Sónia Gonçalves; Nuno C. Santos

Over the last years, antimicrobial peptides (AMPs) have been the focus of intense research toward the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantae, and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components) are presented. Additionally, recent works on antifungal defensins structure, activity, and cytotoxicity are also reviewed.


Pharmacology & Therapeutics | 2016

New frontiers for anti-biofilm drug development

Suzana M. Ribeiro; Mário R. Felício; Esther Vilas Boas; Sónia Gonçalves; Fabrício F. Costa; Ramar Perumal Samy; Nuno C. Santos; Octavio L. Franco

Pathogenic microbial biofilm, a consortium of microbial cells protected by a self-produced polymer matrix, is considered a worldwide challenge due to the inherent antibiotic resistance conferred by its lifestyle. Living, as it does, in a community of microbial organisms in a clinical situation, makes it responsible for severe and dangerous cases of infection. Combating this organisation of cells usually requires high antibiotic doses for a prolonged time, and these approaches often fail, contributing to infection persistence. In addition to therapeutic limitations, biofilms can be a source of infections when they grow in medical devices. The challenge imposed by biofilms has mobilised researchers in the entire world to prospect or develop alternatives to control biofilms. In this context, this review summarises the new frontiers that could be used in clinical circumstances in order to prevent or eliminate pathogenic biofilms.


PLOS ONE | 2011

Variations on Fibrinogen-Erythrocyte Interactions during Cell Aging

Filomena A. Carvalho; Sofia de Oliveira; Teresa Freitas; Sónia Gonçalves; Nuno C. Santos

Erythrocyte hyperaggregation, a cardiovascular risk factor, is considered to be caused by an increase in plasma adhesion proteins, particularly fibrinogen. We have recently reported a specific binding between fibrinogen and an erythrocyte integrin receptor with a β3 or β3-like subunit. In this study we evaluate the influence of erythrocyte aging on the fibrinogen binding. By atomic force microscopy-based force spectroscopy measurements we found that increasing erythrocyte age, there is a decrease of the binding to fibrinogen by decreasing the frequency of its occurrence but not its force. This observation is reinforced by zeta-potential and fluorescence spectroscopy measurements. We conclude that upon erythrocyte aging the number of fibrinogen molecules bound to each cell decreases significantly, due to the progressive impairment of the specific fibrinogen-erythrocyte receptor interaction. Knowing that younger erythrocytes bind more to fibrinogen, we could presume that this population is the main contributor to the cardiovascular diseases associated with increased fibrinogen content in blood, which could disturb the blood flow. Our data also show that the sialic acids exposed on the erythrocyte membrane contribute for the interaction with fibrinogen, possibly by facilitating its binding to the erythrocyte membrane receptor.


RMD Open | 2016

Prevalence of rheumatic and musculoskeletal diseases and their impact on health-related quality of life, physical function and mental health in Portugal: results from EpiReumaPt– a national health survey

Jaime C. Branco; Ana Rodrigues; Nélia Gouveia; Mónica Eusébio; Sofia Ramiro; Pedro Machado; Leonor Pereira da Costa; Ana Filipa Mourão; Inês Silva; P. Laires; Alexandre Sepriano; Filipe Araujo; Sónia Gonçalves; Pedro Simões Coelho; Viviana Tavares; Jorge Cerol; Jorge M. Mendes; Loreto Carmona; Helena Canhão

Objectives To estimate the national prevalence of rheumatic and musculoskeletal diseases (RMDs) in the adult Portuguese population and to determine their impact on health-related quality of life (HRQoL), physical function, anxiety and depression. Methods EpiReumaPt is a national health survey with a three-stage approach. First, 10 661 adult participants were randomly selected. Trained interviewers undertook structured face-to-face questionnaires that included screening for RMDs and assessments of health-related quality of life, physical function, anxiety and depression. Second, positive screenings for ≥1 RMD plus 20% negative screenings were invited to be evaluated by a rheumatologist. Finally, three rheumatologists revised all the information and confirmed the diagnoses according to validated criteria. Estimates were computed as weighted proportions, taking the sampling design into account. Results The disease-specific prevalence rates (and 95% CIs) of RMDs in the adult Portuguese population were: low back pain, 26.4% (23.3% to 29.5%); periarticular disease, 15.8% (13.5% to 18.0%); knee osteoarthritis (OA), 12.4% (11.0% to 13.8%); osteoporosis, 10.2% (9.0% to 11.3%); hand OA, 8.7% (7.5% to 9.9%); hip OA, 2.9% (2.3% to 3.6%); fibromyalgia, 1.7% (1.1% to 2.1%); spondyloarthritis, 1.6% (1.2% to 2.1%); gout, 1.3% (1.0% to 1.6%); rheumatoid arthritis, 0.7% (0.5% to 0.9%); systemic lupus erythaematosus, 0.1% (0.1% to 0.2%) and polymyalgia rheumatica, 0.1% (0.0% to 0.2%). After multivariable adjustment, participants with RMDs had significantly lower EQ5D scores (β=−0.09; p<0.001) and higher HAQ scores (β=0.13; p<0.001) than participants without RMDs. RMDs were also significantly associated with the presence of anxiety symptoms (OR=3.5; p=0.006). Conclusions RMDs are highly prevalent in Portugal and are associated not only with significant physical function and mental health impairment but also with poor HRQoL, leading to more health resource consumption. The EpiReumaPt study emphasises the burden of RMDs in Portugal and the need to increase RMD awareness, being a strong argument to encourage policymakers to increase the amount of resources allocated to the treatment of rheumatic patients.


Frontiers in chemistry | 2017

Peptides with Dual Antimicrobial and Anticancer Activities

Mário R. Felício; Osmar N. Silva; Sónia Gonçalves; Nuno C. Santos; Octávio L. Franco

In recent years, the number of people suffering from cancer and multi-resistant infections has increased, such that both diseases are already seen as current and future major causes of death. Moreover, chronic infections are one of the main causes of cancer, due to the instability in the immune system that allows cancer cells to proliferate. Likewise, the physical debility associated with cancer or with anticancer therapy itself often paves the way for opportunistic infections. It is urgent to develop new therapeutic methods, with higher efficiency and lower side effects. Antimicrobial peptides (AMPs) are found in the innate immune system of a wide range of organisms. Identified as the most promising alternative to conventional molecules used nowadays against infections, some of them have been shown to have dual activity, both as antimicrobial and anticancer peptides (ACPs). Highly cationic and amphipathic, they have demonstrated efficacy against both conditions, with the number of nature-driven or synthetically designed peptides increasing year by year. With similar properties, AMPs that can also act as ACPs are viewed as future chemotherapeutic drugs, with the advantage of low propensity to resistance, which started this paradigm in the pharmaceutical market. These peptides have already been described as molecules presenting killing mechanisms at the membrane level, but also acting toward intracellular targets, which increases their success compartively to one-target specific drugs. This review will approach the desirable characteristics of small peptides that demonstrated dual activity against microbial infections and cancer, as well as the peptides engaged in clinical trials.


Journal of Peptide Science | 2008

Interaction of peptides with biomembranes assessed by potential-sensitive fluorescent probes.

Pedro M. Matos; Sónia Gonçalves; Nuno C. Santos

Peptide–membrane interaction is an important step to be evaluated in a study of the activity and mode of action of several bioactive peptides. A variety of methods are available; however, few of them satisfy the criteria of being sensitive, biocompatible, versatile, easy to perform, and allowing real‐time monitoring as the use of potential‐sensitive fluorescent probes. Here we review methods for detecting the effects of membrane‐active peptides, even those that are not intrinsically fluorescent, on the different types of membrane potentials, with a special emphasis on studies conducted with living cells. FPE is a probe sensitive to surface potential and detects electrostatic interactions at the water‐lipid interface. Di‐8‐ANEPPS is sensitive to dipole potential and detects membrane incorporations. Transmembrane potential changes reveal major membrane destabilizations, such as in pore formation. The combination of the information obtained from the three potential variations can lead to a more elucidative picture of the mechanisms of the interaction of relevant peptides with biomembranes. Copyright


Biochimica et Biophysica Acta | 2012

Evaluation of the membrane lipid selectivity of the pea defensin Psd1

Sónia Gonçalves; Alexandre Teixeira; João Abade; Luciano Neves de Medeiros; Eleonora Kurtenbach; Nuno C. Santos

Psd1, a 46 amino acid residues defensin isolated from the pea Pisum sativum seeds, exhibits anti-fungal activity by a poorly understood mechanism of action. In this work, the interaction of Psd1 with biomembrane model systems of different lipid compositions was assessed by fluorescence spectroscopy. Partition studies showed a marked lipid selectivity of this antimicrobial peptide (AMP) toward lipid membranes containing ergosterol (the main sterol in fungal membranes) or specific glycosphingolipid components, with partition coefficients (K(p)) reaching uncommonly high values of 10(6). By the opposite, Psd1 does not partition to cholesterol-enriched lipid bilayers, such as mammalian cell membranes. The Psd1 mutants His36Lys and Gly12Glu present a membrane affinity loss relative to the wild type. Fluorescence quenching data obtained using acrylamide and membrane probes further clarify the mechanism of action of this peptide at the molecular level, pointing out the potential therapeutic use of Psd1 as a natural antimycotic agent.


Scientific Reports | 2016

A polyalanine peptide derived from polar fish with anti-infectious activities

Marlon Henrique Cardoso; Suzana Meira Ribeiro; Diego O. Nolasco; César de la Fuente-Núñez; Mário R. Felício; Sónia Gonçalves; Carolina O. Matos; Luciano M. Lião; Nuno C. Santos; Robert E. W. Hancock; Octavio L. Franco; Ludovico Migliolo

Due to the growing concern about antibiotic-resistant microbial infections, increasing support has been given to new drug discovery programs. A promising alternative to counter bacterial infections includes the antimicrobial peptides (AMPs), which have emerged as model molecules for rational design strategies. Here we focused on the study of Pa-MAP 1.9, a rationally designed AMP derived from the polar fish Pleuronectes americanus. Pa-MAP 1.9 was active against Gram-negative planktonic bacteria and biofilms, without being cytotoxic to mammalian cells. By using AFM, leakage assays, CD spectroscopy and in silico tools, we found that Pa-MAP 1.9 may be acting both on intracellular targets and on the bacterial surface, also being more efficient at interacting with anionic LUVs mimicking Gram-negative bacterial surface, where this peptide adopts α-helical conformations, than cholesterol-enriched LUVs mimicking mammalian cells. Thus, as bacteria present varied physiological features that favor antibiotic-resistance, Pa-MAP 1.9 could be a promising candidate in the development of tools against infections caused by pathogenic bacteria.


Biochimica et Biophysica Acta | 2016

Structural and functional evaluation of the palindromic alanine-rich antimicrobial peptide Pa-MAP2.

Ludovico Migliolo; Mário R. Felício; Marlon Henrique Cardoso; Osmar N. Silva; Mary-Ann E. Xavier; Diego O. Nolasco; Adeliana Silva de Oliveira; Ignasi Roca-Subira; Jordi Estapé; Leandro D. Teixeira; Sonia Maria de Freitas; Anselmo J. Otero-González; Sónia Gonçalves; Nuno C. Santos; Octávio L. Franco

Recently, several peptides have been studied regarding the defence process against pathogenic microorganisms, which are able to act against different targets, with the purpose of developing novel bioactive compounds. The present work focuses on the structural and functional evaluation of the palindromic antimicrobial peptide Pa-MAP2, designed based on the peptide Pa-MAP from Pleuronectes americanus. For a better structural understanding, molecular modelling analyses were carried out, together with molecular dynamics and circular dichroism, in different media. Antibacterial activity against Gram-negative and positive bacteria was evaluated, as well as cytotoxicity against human erythrocytes, RAW 264.7, Vero and L6 cells. In silico docking experiments, lipid vesicle studies, and atomic force microscopy (AFM) imaging were carried out to explore the activity of the peptide. In vivo studies on infected mice were also done. The palindromic primary sequence favoured an α-helix structure that was pH dependent, only present on alkaline environment, with dynamic N- and C-terminals that are stabilized in anionic media. Pa-MAP2 only showed activity against Gram-negative bacteria, with a MIC of 3.2 μM, and without any cytotoxic effect. In silico, lipid vesicles and AFM studies confirm the preference for anionic lipids (POPG, POPS, DPPE, DPPG and LPS), with the positively charged lysine residues being essential for the initial electrostatic interaction. In vivo studies showed that Pa-MAP2 increases to 100% the survival rate of mice infected with Escherichia coli. Data here reported indicated that palindromic Pa-MAP2 could be an alternative candidate for use in therapeutics against Gram-negative bacterial infections.


Nanomedicine: Nanotechnology, Biology and Medicine | 2015

Effects of singlet oxygen generated by a broad-spectrum viral fusion inhibitor on membrane nanoarchitecture

Axel Hollmann; Sónia Gonçalves; Marcelo T. Augusto; Miguel A. R. B. Castanho; Benhur Lee; Nuno C. Santos

UNLABELLED Targeting membranes of enveloped viruses represents an exciting new paradigm to explore on the development of broad-spectrum antivirals. Recently, broad-spectrum small-molecule antiviral drugs were described, preventing enveloped virus entry at an intermediate step, after virus binding but before virus-cell fusion. Those compounds, including an oxazolidine-2,4-dithione named JL103 that presented the most promissing results, act deleteriously on the virus envelope but not at the cell membrane level. In this work, by using atomic force microscopy (AFM), we aimed at unraveling the effects that JL103 is able to induce in the lipid membrane architecture at the nanoscale. Our results indicate that singlet oxygen produced by JL103 decreases membrane thickness, with an expansion of the area per phospholipid, by attacking the double bonds of unsaturated phospholipids. This membrane reorganization prevents the fusion between enveloped virus and target cell membranes, resulting in viral entry inhibition. FROM THE CLINICAL EDITOR The recent development of a family of innovative broad-spectrum small-molecule antiviral drugs that block virus cell entry has provided exciting armors against viruses. In this research paper, the authors utilize atomic force microscopy to investigate the mechanism of action of viral blockade. The findings have resulted in new understanding of cell membrane behavior, which may help in further drug design.

Collaboration


Dive into the Sónia Gonçalves's collaboration.

Top Co-Authors

Avatar

Nuno C. Santos

Instituto de Medicina Molecular

View shared research outputs
Top Co-Authors

Avatar

Mário R. Felício

Instituto de Medicina Molecular

View shared research outputs
Top Co-Authors

Avatar

Helena Canhão

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Nélia Gouveia

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jorge M. Mendes

Universidade Nova de Lisboa

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ludovico Migliolo

Universidade Católica Dom Bosco

View shared research outputs
Top Co-Authors

Avatar

Octavio L. Franco

Universidade Católica Dom Bosco

View shared research outputs
Researchain Logo
Decentralizing Knowledge