Sonia Jerez
University of Murcia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sonia Jerez.
Journal of Climate | 2014
Cesar Azorin-Molina; Sergio M. Vicente-Serrano; Tim R. McVicar; Sonia Jerez; Arturo Sanchez-Lorenzo; Jesús Revuelto; Ricardo M. Trigo; Joan A. Lopez-Bustins; Csiro Land
Near-surfacewindspeedtrendsrecordedat67land-basedstationsacrossSpainandPortugalfor1961–2011, alsofocusingonthe1979–2008subperiod,wereanalyzed.Windspeedseriesweresubjectedtoqualitycontrol, reconstruction, and homogenization using a novel procedure that incorporated the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5)-simulated seriesasreference.Theresultantseriesshowaslightdownwardtrendforboth1961–2011(20.016ms 21 decade 21 ) and 1979–2008 (20.010ms 21 decade 21 ). However, differences between seasons with declining values in winter and spring, and increasing trends in summer and autumn, were observed. Even though wind stilling affected 77.8% of the stations in winter and 66.7% in spring, only roughly 40% of the declining trends were statistically significant at the p , 0.10 level. On the contrary, increasing trends appeared in 51.9% of the stationsinsummerand57.4%inautumn,withalsoaround40%ofthepositivetrendsstatisticallysignificantat the p , 0.10 level. In this article, the authors also investigated (i) the possible impact of three atmospheric indices on the observed trends and (ii) the role played by the urbanization growth in the observed decline. An accurate homogenization and assessment of the long-term trends of wind speed is crucial for many fields such as wind energy (e.g., power generation) and agriculture–hydrology (e.g., evaporative demand).
Journal of Applied Meteorology and Climatology | 2013
Sonia Jerez; Ricardo M. Trigo; Sergio M. Vicente-Serrano; D. Pozo-Vázquez; R. Lorente-Plazas; Jorge Lorenzo-Lacruz; F. Santos-Alamillos; Juan Pedro Montavez
AbstractEurope is investing considerably in renewable energies for a sustainable future, with both Iberian countries (Portugal and Spain) promoting significantly new hydropower, wind, and solar plants. The climate variability in this area is highly controlled by just a few large-scale teleconnection modes. However, the relationship between these modes and the renewable climate-dependent energy resources has not yet been established in detail. The objective of this study is to evaluate the impact of the North Atlantic Oscillation (NAO) on the interannual variability of the main and primary renewable energy resources in Iberia. This is achieved through a holistic assessment that is based on a 10-km-resolution climate simulation spanning the period 1959–2007 that provides physically consistent data of the various magnitudes involved. A monthly analysis for the extended winter (October–March) months shows that negative NAO phases enhance wind speeds (10%–15%) and, thereby, wind power (estimated around 30% at ...
Climate Dynamics | 2013
Sonia Jerez; Juan Pedro Montavez; Pedro Jiménez-Guerrero; Juan J. Gomez-Navarro; R. Lorente-Plazas; Eduardo Zorita
This work assesses the influence of the model physics in present-day regional climate simulations. It is based on a multi-phyiscs ensemble of 30-year long MM5 hindcasted simulations performed over a complex and climatically heterogeneous domain as the Iberian Peninsula. The ensemble consists of eight members that results from combining different parametrization schemes for modeling the Planetary Boundary Layer, the cumulus and the microphysics processes. The analysis is made at the seasonal time scale and focuses on mean values and interannual variability of temperature and precipitation. The objectives are (1) to evaluate and characterize differences among the simulations attributable to changes in the physical options of the regional model, and (2) to identify the most suitable parametrization schemes and understand the underlying mechanisms causing that some schemes perform better than others. The results confirm the paramount importance of the model physics, showing that the spread among the various simulations is of comparable magnitude to the spread obtained in similar multi-model ensembles. This suggests that most of the spread obtained in multi-model ensembles could be attributable to the different physical configurations employed in the various models. Second, we obtain that no single ensemble member outperforms the others in every situation. Nevertheless, some particular schemes display a better performance. On the one hand, the non-local MRF PBL scheme reduces the cold bias of the simulations throughout the year compared to the local Eta model. The reason is that the former simulates deeper mixing layers. On the other hand, the Grell parametrization scheme for cumulus produces smaller amount of precipitation in the summer season compared to the more complex Kain-Fritsch scheme by reducing the overestimation in the simulated frequency of the convective precipitation events. Consequently, the interannual variability of precipitation (temperature) diminishes (increases), which implies a better agreement with the observations in both cases. Although these features improve in general the accuracy of the simulations, controversial nuances are also highlighted.
Journal of Geophysical Research | 2012
Sonia Jerez; Juan Pedro Montavez; Juan J. Gomez-Navarro; Pedro A. Jiménez; Pedro Jiménez-Guerrero; Raquel Lorente; J. F. González-Rouco
The importance of land-surface processes within Regional Climate Models for accurately reproducing the present-day climate is well known. However, their role when projecting future climate is still poorly reported. Hence, this work assesses the influence of the land-surface processes, particularly the contribution of soil moisture, when projecting future changes for temperature, precipitation and wind over a complex area as the Iberian Peninsula, which, in addition, shows great sensitivity to climate change. The main signals are found for the summer season, when the results indicate a strengthening in the increases projected for both mean temperature and temperature variability as a consequence of the future intensification of the positive soil moisture-temperature feedback. The more severe warming over the inner dry Iberian Peninsula further implies an intensification of the Iberian thermal low and, thus, of the cyclonic circulation. Furthermore, the land-atmosphere coupling leads to the projection of a wider future daily temperature range, since maximum temperatures are more affected than minima, a feature absent in non-coupled simulations. Regarding variability, the areas where the land-atmosphere coupling introduces larger changes are those where the reduction in the soil moisture content is more dramatic in future simulations, i.e., the so-called transitional zones. As regards precipitation, weaker positive signals for convective precipitation and more intense negative signals for non-convective precipitation are obtained as a result of the soil moisture-atmosphere interactions. These results highlight the crucial contribution of soil moisture to climate change projections and suggest its plausible key role for future projections of extreme events.
Nature Communications | 2015
Sonia Jerez; Isabelle Tobin; Robert Vautard; Juan Pedro Montavez; José María López-Romero; Françoise Thais; Blanka Bartók; Ole Bøssing Christensen; Augustin Colette; Michel Déqué; Grigory Nikulin; Sven Kotlarski; Erik van Meijgaard; Claas Teichmann; Martin Wild
Ambitious climate change mitigation plans call for a significant increase in the use of renewables, which could, however, make the supply system more vulnerable to climate variability and changes. Here we evaluate climate change impacts on solar photovoltaic (PV) power in Europe using the recent EURO-CORDEX ensemble of high-resolution climate projections together with a PV power production model and assuming a well-developed European PV power fleet. Results indicate that the alteration of solar PV supply by the end of this century compared with the estimations made under current climate conditions should be in the range (−14%;+2%), with the largest decreases in Northern countries. Temporal stability of power generation does not appear as strongly affected in future climate scenarios either, even showing a slight positive trend in Southern countries. Therefore, despite small decreases in production expected in some parts of Europe, climate change is unlikely to threaten the European PV sector.
Environmental Research Letters | 2013
Sonia Jerez; Ricardo M. Trigo
The North Atlantic Oscillation (NAO), the East Atlantic (EA) and the Scandinavian (SCAND) modes are the three main large-scale circulation patterns driving the climate variability of the Iberian Peninsula. This study assesses their influence in terms of solar (photovoltaic) and wind power generation potential (SP and WP) and evaluates their skill as predictors. For that we use a hindcast regional climate simulation to retrieve the primary meteorological variables involved, surface solar radiation and wind speed. First we identify that the maximum influence of the various modes occurs on the interannual variations of the monthly mean SP and WP series, being generally more relevant in winter. Second we find that in this time-scale and season, SP (WP) varies up to 30% (40%) with respect to the mean climatology between years with opposite phases of the modes, although the strength and the spatial distribution of the signals differ from one month to another. Last, the skill of a multi-linear regression model (MLRM), built using the NAO, EA and SCAND indices, to reconstruct the original wintertime monthly series of SP and WP was investigated. The reconstructed series (when the MLRM is calibrated for each month individually) correlate with the original ones up to 0.8 at the interannual time-scale. Besides, when the modeled series for each individual month are merged to construct an October-to-March monthly series, and after removing the annual cycle in order to account for monthly anomalies, these correlate 0.65 (0.55) with the original SP (WP) series in average. These values remain fairly stable when the calibration and reconstruction periods differ, thus supporting up to a point the predictive potential of the method at the time-scale assessed here.
Meteorologische Zeitschrift | 2010
Sonia Jerez; Juan Pedro Montavez; Juan J. Gomez-Navarro; Pedro Jiménez-Guerrero; Jose M. Jimenez; J. F. González-Rouco
Three different Land Surface Models have been used in three high resolution climate simulations performed with the mesoscale model MM5 over the Iberian Peninsula. The main difference among them lies in the soil moisture treatment, which is dynamically modelled by only two of them (Noah and Pleim & Xiu models), while in the simplest model (Simple Five-Layers) it is fixed to climatological values. The simulated period covers 1958-2002, using the ERA40 reanalysis data as driving conditions. Focusing on near-surface air temperature, this work evaluates the skill of each simulation in reproducing mean values and temporal variability, by comparing the simulations with observed temperature series. When the simplest simulation was analyzed, the greatest discrepances were observed for the summer season, when both, the mean values and the temporal variability of the temperature series, were badly underestimated. These weaknesses are largely overcome in the other two simulations (performed by coupling a more advanced soil model to MM5), and there was greater concordance between the simulated and observed spatial patterns. The influence of a dynamic soil moisture parameterization and, therefore, a more realistic simulation of the latent and sensible heat fluxes between the land and the atmosphere, helps to explain these results.
Journal of Geophysical Research | 2016
Cesar Azorin-Molina; Jose‐A. Guijarro; Tim R. McVicar; Sergio M. Vicente-Serrano; Deliang Chen; Sonia Jerez; Fátima Espírito‐Santo
Given the inconsistencies of wind gust trends under the widespread decline in near-surface wind speed (stilling), our study aimed to assess trends of observed daily peak wind gusts (DPWG) across Spain and Portugal for 1961–2014 by analyzing trends of (i) the frequency (90th percentile) and (ii) the magnitude (wind speed maxima) of DPWG. Wind gust series were homogenized on a daily basis, using MM5-simulated series as reference, resulting in 80 suitable station-based data sets. The average DPWG 90th percentile frequency declined by −1.49 d decade−1 (p 0.10). A negligible trend was calculated for the annual magnitude of DPWG (−0.005 m s−1 decade−1; p > 0.10), with distinct seasonality: declining in winter (−0.168 m s−1 decade−1; p 0.10), especially for the frequency, suggesting the role of local-to-mesoscale drivers.
Meteorologische Zeitschrift | 2010
Juan J. Gomez-Navarro; Juan Pedro Montavez; Pedro Jiménez-Guerrero; Sonia Jerez; Juan A. Garcia-Valero; J. F. González-Rouco
A set of four regional climate change projections over the Iberian Peninsula has been performed. Simulations were driven by two General Circulation Models (consisting of two versions of the same atmospheric model coupled to two different ocean models) under two different SRES scenario. The XXI century has been simulated following a full-transient approach with a climate version of the mesoscale model MM5. An Empirical Orthogonal Function analysis (EOF) is applied to the monthly mean series of daily maximum and minimum 2-metre temperature to extract the warming signal. The first EOF is able to capture the spatial structure of the warming. The obtained warming patterns are fairly dependent on the month, but hardly change with the tested scenarios and GCM versions. Their shapes are related to geographical parameters, such as distance to the sea and orography. The main differences among simulations mostly concern the temporal evolution of the warming. The temperature trend is stronger for maximum temperatures and depends on the scenario and the driving GCM. This asymmetry, as well as the different warming rates in summer and winter, leads to a continentalization of the climate over the IP.
Environmental Research Letters | 2016
Isabelle Tobin; Sonia Jerez; Robert Vautard; Françoise Thais; Erik van Meijgaard; Andreas F. Prein; Michel Déqué; Sven Kotlarski; Cathrine Fox Maule; Grigory Nikulin; Thomas Noël; Claas Teichmann
Wind energy resource is subject to changes in climate. To investigate the impacts of climate change on future European wind power generation potential, we analyze a multi-model ensemble of the most recent EURO-CORDEX regional climate simulations at the 12 km grid resolution. We developed a mid-century wind power plant scenario to focus the impact assessment on relevant locations for future wind power industry. We found that, under two greenhouse gas concentration scenarios, changes in the annual energy yield of the future European wind farms fleet as a whole will remain within ±5% across the 21st century. At country to local scales, wind farm yields will undergo changes up to 15% in magnitude, according to the large majority of models, but smaller than 5% in magnitude for most regions and models. The southern fleets such as the Iberian and Italian fleets are likely to be the most affected. With regard to variability, changes are essentially small or poorly significant from subdaily to interannual time scales.
Collaboration
Dive into the Sonia Jerez's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputs