Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sonia Tarazona is active.

Publication


Featured researches published by Sonia Tarazona.


Genome Research | 2011

Differential expression in RNA-seq: A matter of depth

Sonia Tarazona; Fernando Garcia-Alcalde; Joaquín Dopazo; Alberto Ferrer; Ana Conesa

Next-generation sequencing (NGS) technologies are revolutionizing genome research, and in particular, their application to transcriptomics (RNA-seq) is increasingly being used for gene expression profiling as a replacement for microarrays. However, the properties of RNA-seq data have not been yet fully established, and additional research is needed for understanding how these data respond to differential expression analysis. In this work, we set out to gain insights into the characteristics of RNA-seq data analysis by studying an important parameter of this technology: the sequencing depth. We have analyzed how sequencing depth affects the detection of transcripts and their identification as differentially expressed, looking at aspects such as transcript biotype, length, expression level, and fold-change. We have evaluated different algorithms available for the analysis of RNA-seq and proposed a novel approach--NOISeq--that differs from existing methods in that it is data-adaptive and nonparametric. Our results reveal that most existing methodologies suffer from a strong dependency on sequencing depth for their differential expression calls and that this results in a considerable number of false positives that increases as the number of reads grows. In contrast, our proposed method models the noise distribution from the actual data, can therefore better adapt to the size of the data set, and is more effective in controlling the rate of false discoveries. This work discusses the true potential of RNA-seq for studying regulation at low expression ranges, the noise within RNA-seq data, and the issue of replication.


Genome Biology | 2016

A survey of best practices for RNA-seq data analysis

Ana Conesa; Pedro Madrigal; Sonia Tarazona; David Gomez-Cabrero; Alejandra Cervera; Andrew McPherson; Michał Wojciech Szcześniak; Daniel J. Gaffney; Laura L. Elo; Xuegong Zhang; Ali Mortazavi

RNA-sequencing (RNA-seq) has a wide variety of applications, but no single analysis pipeline can be used in all cases. We review all of the major steps in RNA-seq data analysis, including experimental design, quality control, read alignment, quantification of gene and transcript levels, visualization, differential gene expression, alternative splicing, functional analysis, gene fusion detection and eQTL mapping. We highlight the challenges associated with each step. We discuss the analysis of small RNAs and the integration of RNA-seq with other functional genomics techniques. Finally, we discuss the outlook for novel technologies that are changing the state of the art in transcriptomics.


Bioinformatics | 2012

Qualimap: evaluating next-generation sequencing alignment data

Fernando Garcia-Alcalde; Konstantin Okonechnikov; José Carbonell; Luis Miguel Cruz; Stefan Götz; Sonia Tarazona; Joaquín Dopazo; Thomas F. Meyer; Ana Conesa

MOTIVATION The sequence alignment/map (SAM) and the binary alignment/map (BAM) formats have become the standard method of representation of nucleotide sequence alignments for next-generation sequencing data. SAM/BAM files usually contain information from tens to hundreds of millions of reads. Often, the sequencing technology, protocol and/or the selected mapping algorithm introduce some unwanted biases in these data. The systematic detection of such biases is a non-trivial task that is crucial to drive appropriate downstream analyses. RESULTS We have developed Qualimap, a Java application that supports user-friendly quality control of mapping data, by considering sequence features and their genomic properties. Qualimap takes sequence alignment data and provides graphical and statistical analyses for the evaluation of data. Such quality-control data are vital for highlighting problems in the sequencing and/or mapping processes, which must be addressed prior to further analyses. AVAILABILITY Qualimap is freely available from http://www.qualimap.org.


Nucleic Acids Research | 2015

Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package

Sonia Tarazona; Pedro Furió-Tarí; David Turrà; Antonio Di Pietro; María José Nueda; Alberto Ferrer; Ana Conesa

As the use of RNA-seq has popularized, there is an increasing consciousness of the importance of experimental design, bias removal, accurate quantification and control of false positives for proper data analysis. We introduce the NOISeq R-package for quality control and analysis of count data. We show how the available diagnostic tools can be used to monitor quality issues, make pre-processing decisions and improve analysis. We demonstrate that the non-parametric NOISeqBIO efficiently controls false discoveries in experiments with biological replication and outperforms state-of-the-art methods. NOISeq is a comprehensive resource that meets current needs for robust data-aware analysis of RNA-seq differential expression.


Stem Cells | 2009

Hypoxia Promotes Efficient Differentiation of Human Embryonic Stem Cells to Functional Endothelium

Sonia Prado-López; Ana Conesa; Ana Armiñán; Magdalena Martínez-Losa; Carmen Escobedo-Lucea; Carolina Gandía; Sonia Tarazona; Dario Melguizo; David Blesa; David Montaner; Silvia M. Sanz-González; Pilar Sepúlveda; Stefan Götz; José-Enrique O'Connor; Rubén Moreno; Joaquín Dopazo; Deborah J. Burks; Miodrag Stojkovic

Early development of mammalian embryos occurs in an environment of relative hypoxia. Nevertheless, human embryonic stem cells (hESC), which are derived from the inner cell mass of blastocyst, are routinely cultured under the same atmospheric conditions (21% O2) as somatic cells. We hypothesized that O2 levels modulate gene expression and differentiation potential of hESC, and thus, we performed gene profiling of hESC maintained under normoxic or hypoxic (1% or 5% O2) conditions. Our analysis revealed that hypoxia downregulates expression of pluripotency markers in hESC but increases significantly the expression of genes associated with angio‐ and vasculogenesis including vascular endothelial growth factor and angiopoitein‐like proteins. Consequently, we were able to efficiently differentiate hESC to functional endothelial cells (EC) by varying O2 levels; after 24 hours at 5% O2, more than 50% of cells were CD34+. Transplantation of resulting endothelial‐like cells improved both systolic function and fractional shortening in a rodent model of myocardial infarction. Moreover, analysis of the infarcted zone revealed that transplanted EC reduced the area of fibrous scar tissue by 50%. Thus, use of hypoxic conditions to specify the endothelial lineage suggests a novel strategy for cellular therapies aimed at repair of damaged vasculature in pathologies such as cerebral ischemia and myocardial infarction. STEM CELLS 2010;28:407–418


Bioinformatics | 2014

Next maSigPro: updating maSigPro bioconductor package for RNA-seq time series

María José Nueda; Sonia Tarazona; Ana Conesa

Motivation: The widespread adoption of RNA-seq to quantitatively measure gene expression has increased the scope of sequencing experimental designs to include time-course experiments. maSigPro is an R package specifically suited for the analysis of time-course gene expression data, which was developed originally for microarrays and hence was limited in its application to count data. Results: We have updated maSigPro to support RNA-seq time series analysis by introducing generalized linear models in the algorithm to support the modeling of count data while maintaining the traditional functionalities of the package. We show a good performance of the maSigPro-GLM method in several simulated time-course scenarios and in a real experimental dataset. Availability and implementation: The package is freely available under the LGPL license from the Bioconductor Web site (http://bioconductor.org). Contact: [email protected] or [email protected]


BMC Bioinformatics | 2009

Functional assessment of time course microarray data

María José Nueda; Patricia Sebastián; Sonia Tarazona; Francisco García-García; Joaquín Dopazo; Alberto Ferrer; Ana Conesa

MotivationTime-course microarray experiments study the progress of gene expression along time across one or several experimental conditions. Most developed analysis methods focus on the clustering or the differential expression analysis of genes and do not integrate functional information. The assessment of the functional aspects of time-course transcriptomics data requires the use of approaches that exploit the activation dynamics of the functional categories to where genes are annotated.MethodsWe present three novel methodologies for the functional assessment of time-course microarray data. i) maSigFun derives from the maSigPro method, a regression-based strategy to model time-dependent expression patterns and identify genes with differences across series. maSigFun fits a regression model for groups of genes labeled by a functional class and selects those categories which have a significant model. ii) PCA-maSigFun fits a PCA model of each functional class-defined expression matrix to extract orthogonal patterns of expression change, which are then assessed for their fit to a time-dependent regression model. iii) ASCA-functional uses the ASCA model to rank genes according to their correlation to principal time expression patterns and assess functional enrichment on a GSA fashion. We used simulated and experimental datasets to study these novel approaches. Results were compared to alternative methodologies.ResultsSynthetic and experimental data showed that the different methods are able to capture different aspects of the relationship between genes, functions and co-expression that are biologically meaningful. The methods should not be considered as competitive but they provide different insights into the molecular and functional dynamic events taking place within the biological system under study.


BMC Systems Biology | 2014

Pathway network inference from gene expression data

Ignacio Ponzoni; María José Nueda; Sonia Tarazona; Stefan Götz; David Montaner; Julieta Sol Dussaut; Joaquín Dopazo; Ana Conesa

BackgroundThe development of high-throughput omics technologies enabled genome-wide measurements of the activity of cellular elements and provides the analytical resources for the progress of the Systems Biology discipline. Analysis and interpretation of gene expression data has evolved from the gene to the pathway and interaction level, i.e. from the detection of differentially expressed genes, to the establishment of gene interaction networks and the identification of enriched functional categories. Still, the understanding of biological systems requires a further level of analysis that addresses the characterization of the interaction between functional modules.ResultsWe present a novel computational methodology to study the functional interconnections among the molecular elements of a biological system. The PANA approach uses high-throughput genomics measurements and a functional annotation scheme to extract an activity profile from each functional block -or pathway- followed by machine-learning methods to infer the relationships between these functional profiles. The result is a global, interconnected network of pathways that represents the functional cross-talk within the molecular system. We have applied this approach to describe the functional transcriptional connections during the yeast cell cycle and to identify pathways that change their connectivity in a disease condition using an Alzheimer example.ConclusionsPANA is a useful tool to deepen in our understanding of the functional interdependences that operate within complex biological systems. We show the approach is algorithmically consistent and the inferred network is well supported by the available functional data. The method allows the dissection of the molecular basis of the functional connections and we describe the different regulatory mechanisms that explain the networks topology obtained for the yeast cell cycle data.


BMC Systems Biology | 2014

Understanding disease mechanisms with models of signaling pathway activities

Patricia Sebastián-León; Enrique Vidal; Pablo Minguez; Ana Conesa; Sonia Tarazona; Alicia Amadoz; Carmen Armero; Francisco Salavert; Antonio Vidal-Puig; David Montaner; Joaquín Dopazo

BackgroundUnderstanding the aspects of the cell functionality that account for disease or drug action mechanisms is one of the main challenges in the analysis of genomic data and is on the basis of the future implementation of precision medicine.ResultsHere we propose a simple probabilistic model in which signaling pathways are separated into elementary sub-pathways or signal transmission circuits (which ultimately trigger cell functions) and then transforms gene expression measurements into probabilities of activation of such signal transmission circuits. Using this model, differential activation of such circuits between biological conditions can be estimated. Thus, circuit activation statuses can be interpreted as biomarkers that discriminate among the compared conditions. This type of mechanism-based biomarkers accounts for cell functional activities and can easily be associated to disease or drug action mechanisms. The accuracy of the proposed model is demonstrated with simulations and real datasets.ConclusionsThe proposed model provides detailed information that enables the interpretation disease mechanisms as a consequence of the complex combinations of altered gene expression values. Moreover, it offers a framework for suggesting possible ways of therapeutic intervention in a pathologically perturbed system.


BMC Genomics | 2015

RNAseq analysis of Aspergillus fumigatus in blood reveals a just wait and see resting stage behavior

Henriette Irmer; Sonia Tarazona; Christoph Sasse; Patrick Olbermann; Jürgen Loeffler; Sven Krappmann; Ana Conesa; Gerhard H. Braus

BackgroundInvasive aspergillosis is started after germination of Aspergillus fumigatus conidia that are inhaled by susceptible individuals. Fungal hyphae can grow in the lung through the epithelial tissue and disseminate hematogenously to invade into other organs. Low fungaemia indicates that fungal elements do not reside in the bloodstream for long.ResultsWe analyzed whether blood represents a hostile environment to which the physiology of A. fumigatus has to adapt. An in vitro model of A. fumigatus infection was established by incubating mycelium in blood. Our model allowed to discern the changes of the gene expression profile of A. fumigatus at various stages of the infection. The majority of described virulence factors that are connected to pulmonary infections appeared not to be activated during the blood phase. Three active processes were identified that presumably help the fungus to survive the blood environment in an advanced phase of the infection: iron homeostasis, secondary metabolism, and the formation of detoxifying enzymes.ConclusionsWe propose that A. fumigatus is hardly able to propagate in blood. After an early stage of sensing the environment, virtually all uptake mechanisms and energy-consuming metabolic pathways are shut-down. The fungus appears to adapt by trans-differentiation into a resting mycelial stage. This might reflect the harsh conditions in blood where A. fumigatus cannot take up sufficient nutrients to establish self-defense mechanisms combined with significant growth.

Collaboration


Dive into the Sonia Tarazona's collaboration.

Top Co-Authors

Avatar

Ana Conesa

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Ana Conesa

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar

Alberto Ferrer

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge