Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ana Conesa is active.

Publication


Featured researches published by Ana Conesa.


Genome Biology | 2016

A survey of best practices for RNA-seq data analysis

Ana Conesa; Pedro Madrigal; Sonia Tarazona; David Gomez-Cabrero; Alejandra Cervera; Andrew McPherson; Michał Wojciech Szcześniak; Daniel J. Gaffney; Laura L. Elo; Xuegong Zhang; Ali Mortazavi

RNA-sequencing (RNA-seq) has a wide variety of applications, but no single analysis pipeline can be used in all cases. We review all of the major steps in RNA-seq data analysis, including experimental design, quality control, read alignment, quantification of gene and transcript levels, visualization, differential gene expression, alternative splicing, functional analysis, gene fusion detection and eQTL mapping. We highlight the challenges associated with each step. We discuss the analysis of small RNAs and the integration of RNA-seq with other functional genomics techniques. Finally, we discuss the outlook for novel technologies that are changing the state of the art in transcriptomics.


Bioinformatics | 2015

Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data

Konstantin Okonechnikov; Ana Conesa; Fernando Garcia-Alcalde

Motivation: Detection of random errors and systematic biases is a crucial step of a robust pipeline for processing high-throughput sequencing (HTS) data. Bioinformatics software tools capable of performing this task are available, either for general analysis of HTS data or targeted to a specific sequencing technology. However, most of the existing QC instruments only allow processing of one sample at a time. Results: Qualimap 2 represents a next step in the QC analysis of HTS data. Along with comprehensive single-sample analysis of alignment data, it includes new modes that allow simultaneous processing and comparison of multiple samples. As with the first version, the new features are available via both graphical and command line interface. Additionally, it includes a large number of improvements proposed by the user community. Availability and implementation: The implementation of the software along with documentation is freely available at http://www.qualimap.org. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


Bioinformatics | 2011

B2G-FAR, a species-centered GO annotation repository

Stefan Götz; Roland Arnold; Patricia Sebastián-León; Samuel Martín-Rodríguez; Patrick Tischler; Marc-André Jehl; Joaquín Dopazo; Thomas Rattei; Ana Conesa

Motivation: Functional genomics research has expanded enormously in the last decade thanks to the cost reduction in high-throughput technologies and the development of computational tools that generate, standardize and share information on gene and protein function such as the Gene Ontology (GO). Nevertheless, many biologists, especially working with non-model organisms, still suffer from non-existing or low-coverage functional annotation, or simply struggle retrieving, summarizing and querying these data. Results: The Blast2GO Functional Annotation Repository (B2G-FAR) is a bioinformatics resource envisaged to provide functional information for otherwise uncharacterized sequence data and offers data mining tools to analyze a larger repertoire of species than currently available. This new annotation resource has been created by applying the Blast2GO functional annotation engine in a strongly high-throughput manner to the entire space of public available sequences. The resulting repository contains GO term predictions for over 13.2 million non-redundant protein sequences based on BLAST search alignments from the SIMAP database. We generated GO annotation for approximately 150 000 different taxa making available 2000 species with the highest coverage through B2G-FAR. A second section within B2G-FAR holds functional annotations for 17 non-model organism Affymetrix GeneChips. Conclusions: B2G-FAR provides easy access to exhaustive functional annotation for 2000 species offering a good balance between quality and quantity, thereby supporting functional genomics research especially in the case of non-model organisms. Availability: The annotation resource is available at http://www.b2gfar.org. Contact: [email protected]; [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


Nucleic Acids Research | 2015

Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package

Sonia Tarazona; Pedro Furió-Tarí; David Turrà; Antonio Di Pietro; María José Nueda; Alberto Ferrer; Ana Conesa

As the use of RNA-seq has popularized, there is an increasing consciousness of the importance of experimental design, bias removal, accurate quantification and control of false positives for proper data analysis. We introduce the NOISeq R-package for quality control and analysis of count data. We show how the available diagnostic tools can be used to monitor quality issues, make pre-processing decisions and improve analysis. We demonstrate that the non-parametric NOISeqBIO efficiently controls false discoveries in experiments with biological replication and outperforms state-of-the-art methods. NOISeq is a comprehensive resource that meets current needs for robust data-aware analysis of RNA-seq differential expression.


New Phytologist | 2012

Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar‐dependent manner

Carmen Leida; Ana Conesa; Gerardo Llácer; María Luisa Badenes; Gabino Ríos

• Bud dormancy release in many woody perennial plants responds to the seasonal accumulation of chilling stimulus. MADS-box transcription factors encoded by DORMANCY ASSOCIATED MADS-box (DAM) genes in peach (Prunus persica) are implicated in this pathway, but other regulatory factors remain to be identified. In addition, the regulation of DAM gene expression is not well known at the molecular level. • A microarray hybridization approach was performed to identify genes whose expression correlates with the bud dormancy-related behaviour in 10 different peach cultivars. Histone modifications in DAM6 gene were investigated by chromatin immunoprecipitation in two different cultivars. • The expression of DAM4-DAM6 and several genes related to abscisic acid and drought stress response correlated with the dormancy behaviour of peach cultivars. The trimethylation of histone H3 at K27 in the DAM6 promoter, coding region and the second large intron was preceded by a decrease in acetylated H3 and trimethylated H3K4 in the region of translation start, coinciding with repression of DAM6 during dormancy release. • Analysis of chromatin modifications reinforced the role of epigenetic mechanisms in DAM6 regulation and bud dormancy release, and highlighted common features with the vernalization process in Arabidopsis thaliana and cereals.


Genome Medicine | 2016

Making sense of big data in health research: Towards an EU action plan

Charles Auffray; Rudi Balling; Inês Barroso; László Bencze; Mikael Benson; Jay Bergeron; Enrique Bernal-Delgado; Niklas Blomberg; Christoph Bock; Ana Conesa; Susanna Del Signore; Christophe Delogne; Peter Devilee; Alberto Di Meglio; Marinus J.C. Eijkemans; Paul Flicek; Norbert Graf; Vera Grimm; Henk-Jan Guchelaar; Yike Guo; Ivo Gut; Allan Hanbury; Shahid Hanif; Ralf Dieter Hilgers; Ángel Honrado; D. Rod Hose; Jeanine J. Houwing-Duistermaat; Tim Hubbard; Sophie Helen Janacek; Haralampos Karanikas

Medicine and healthcare are undergoing profound changes. Whole-genome sequencing and high-resolution imaging technologies are key drivers of this rapid and crucial transformation. Technological innovation combined with automation and miniaturization has triggered an explosion in data production that will soon reach exabyte proportions. How are we going to deal with this exponential increase in data production? The potential of “big data” for improving health is enormous but, at the same time, we face a wide range of challenges to overcome urgently. Europe is very proud of its cultural diversity; however, exploitation of the data made available through advances in genomic medicine, imaging, and a wide range of mobile health applications or connected devices is hampered by numerous historical, technical, legal, and political barriers. European health systems and databases are diverse and fragmented. There is a lack of harmonization of data formats, processing, analysis, and data transfer, which leads to incompatibilities and lost opportunities. Legal frameworks for data sharing are evolving. Clinicians, researchers, and citizens need improved methods, tools, and training to generate, analyze, and query data effectively. Addressing these barriers will contribute to creating the European Single Market for health, which will improve health and healthcare for all Europeans.


Nucleic Acids Research | 2010

SIMAP—a comprehensive database of pre-calculated protein sequence similarities, domains, annotations and clusters

Thomas Rattei; Patrick Tischler; Stefan Götz; Marc-André Jehl; Jonathan Hoser; Roland Arnold; Ana Conesa; Hans-Werner Mewes

The prediction of protein function as well as the reconstruction of evolutionary genesis employing sequence comparison at large is still the most powerful tool in sequence analysis. Due to the exponential growth of the number of known protein sequences and the subsequent quadratic growth of the similarity matrix, the computation of the Similarity Matrix of Proteins (SIMAP) becomes a computational intensive task. The SIMAP database provides a comprehensive and up-to-date pre-calculation of the protein sequence similarity matrix, sequence-based features and sequence clusters. As of September 2009, SIMAP covers 48 million proteins and more than 23 million non-redundant sequences. Novel features of SIMAP include the expansion of the sequence space by including databases such as ENSEMBL as well as the integration of metagenomes based on their consistent processing and annotation. Furthermore, protein function predictions by Blast2GO are pre-calculated for all sequences in SIMAP and the data access and query functions have been improved. SIMAP assists biologists to query the up-to-date sequence space systematically and facilitates large-scale downstream projects in computational biology. Access to SIMAP is freely provided through the web portal for individuals (http://mips.gsf.de/simap/) and for programmatic access through DAS (http://webclu.bio.wzw.tum.de/das/) and Web-Service (http://mips.gsf.de/webservices/services/SimapService2.0?wsdl).


BMC Genomics | 2015

RNAseq analysis of Aspergillus fumigatus in blood reveals a just wait and see resting stage behavior

Henriette Irmer; Sonia Tarazona; Christoph Sasse; Patrick Olbermann; Jürgen Loeffler; Sven Krappmann; Ana Conesa; Gerhard H. Braus

BackgroundInvasive aspergillosis is started after germination of Aspergillus fumigatus conidia that are inhaled by susceptible individuals. Fungal hyphae can grow in the lung through the epithelial tissue and disseminate hematogenously to invade into other organs. Low fungaemia indicates that fungal elements do not reside in the bloodstream for long.ResultsWe analyzed whether blood represents a hostile environment to which the physiology of A. fumigatus has to adapt. An in vitro model of A. fumigatus infection was established by incubating mycelium in blood. Our model allowed to discern the changes of the gene expression profile of A. fumigatus at various stages of the infection. The majority of described virulence factors that are connected to pulmonary infections appeared not to be activated during the blood phase. Three active processes were identified that presumably help the fungus to survive the blood environment in an advanced phase of the infection: iron homeostasis, secondary metabolism, and the formation of detoxifying enzymes.ConclusionsWe propose that A. fumigatus is hardly able to propagate in blood. After an early stage of sensing the environment, virtually all uptake mechanisms and energy-consuming metabolic pathways are shut-down. The fungus appears to adapt by trans-differentiation into a resting mycelial stage. This might reflect the harsh conditions in blood where A. fumigatus cannot take up sufficient nutrients to establish self-defense mechanisms combined with significant growth.


Molecular Ecology | 2016

Transcriptome modulation during host shift is driven by secondary metabolites in desert Drosophila

Diego N. De Panis; Julián Padró; Pedro Furió-Tarí; Sonia Tarazona; Pablo S. Milla Carmona; Ignacio M. Soto; Hernán Dopazo; Ana Conesa; Esteban Hasson

High‐throughput transcriptome studies are breaking new ground to investigate the responses that organisms deploy in alternative environments. Nevertheless, much remains to be understood about the genetic basis of host plant adaptation. Here, we investigate genome‐wide expression in the fly Drosophila buzzatii raised in different conditions. This species uses decaying tissues of cactus of the genus Opuntia as primary rearing substrate and secondarily, the necrotic tissues of the columnar cactus Trichocereus terscheckii. The latter constitutes a harmful host, rich in mescaline and other related phenylethylamine alkaloids. We assessed the transcriptomic responses of larvae reared in Opuntia sulphurea and T. terscheckii, with and without the addition of alkaloids extracted from the latter. Whole‐genome expression profiles were massively modulated by the rearing environment, mainly by the presence of T. terscheckii alkaloids. Differentially expressed genes were mainly related to detoxification, oxidation–reduction and stress response; however, we also found genes involved in development and neurobiological processes. In conclusion, our study contributes new data onto the role of transcriptional plasticity in response to alternative rearing environments.


Nucleic Acids Research | 2016

spongeScan: A web for detecting microRNA binding elements in lncRNA sequences

Pedro Furió-Tarí; Sonia Tarazona; Toni Gabaldón; Anton J. Enright; Ana Conesa

Non-coding RNA transcripts such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are important genetic regulators. However, the functions of many of these transcripts are still not clearly understood. Recently, it has become apparent that there is significant crosstalk between miRNAs and lncRNAs and that this creates competition for binding between the miRNA, a lncRNA and other regulatory targets. Indeed, various competitive endogenous RNAs (ceRNAs) have already been identified where a lncRNA acts by sequestering miRNAs. This implies the down-regulation in the interaction of the miRNAs with their mRNA targets, what has been called a sponge effect. Multiple approaches exist for the prediction of miRNA targets in mRNAs. However, few methods exist for the prediction of miRNA response elements (MREs) in lncRNAs acting as ceRNAs (sponges). Here, we present spongeScan (http://spongescan.rc.ufl.edu), a graphical web tool to compute and visualize putative MREs in lncRNAs, along with different measures to assess their likely behavior as ceRNAs.

Collaboration


Dive into the Ana Conesa's collaboration.

Top Co-Authors

Avatar

Sonia Tarazona

Polytechnic University of Valencia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ali Mortazavi

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erik Bongcam-Rudloff

Swedish University of Agricultural Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ivo Gut

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vera Grimm

Forschungszentrum Jülich

View shared research outputs
Researchain Logo
Decentralizing Knowledge