Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sónia Troeira Henriques is active.

Publication


Featured researches published by Sónia Troeira Henriques.


Biochemical Journal | 2006

Cell-penetrating peptides and antimicrobial peptides: how different are they?

Sónia Troeira Henriques; Manuel N. Melo; Miguel A. R. B. Castanho

Some cationic peptides, referred to as CPPs (cell-penetrating peptides), have the ability to translocate across biological membranes in a non-disruptive way and to overcome the impermeable nature of the cell membrane. They have been successfully used for drug delivery into mammalian cells; however, there is no consensus about the mechanism of cellular uptake. Both endocytic and non-endocytic pathways are supported by experimental evidence. The observation that some AMPs (antimicrobial peptides) can enter host cells without damaging their cytoplasmic membrane, as well as kill pathogenic agents, has also attracted attention. The capacity to translocate across the cell membrane has been reported for some of these AMPs. Like CPPs, AMPs are short and cationic sequences with a high affinity for membranes. Similarities between CPPs and AMPs prompted us to question if these two classes of peptides really belong to unrelated families. In this Review, a critical comparison of the mechanisms that underlie cellular uptake is undertaken. A reflection and a new perspective about CPPs and AMPs are presented.


Journal of Biological Chemistry | 2011

Identification and characterization of a new family of cell penetrating peptides: Cyclic cell penetrating peptides

Laura Cascales; Sónia Troeira Henriques; Markus C. Kerr; Yen-Hua Huang; Matthew J. Sweet; Norelle L. Daly; David J. Craik

Cell-penetrating peptides can translocate across the plasma membrane of living cells and thus are potentially useful agents in drug delivery applications. Disulfide-rich cyclic peptides also have promise in drug design because of their exceptional stability, but to date only one cyclic peptide has been reported to penetrate cells, the Momordica cochinchinensis trypsin inhibitor II (MCoTI-II). MCoTI-II belongs to the cyclotide family of plant-derived cyclic peptides that are characterized by a cyclic cystine knot motif. Previous studies in fixed cells showed that MCoTI-II could penetrate cells but kalata B1, a prototypic cyclotide from a separate subfamily of cyclotides, was bound to the plasma membrane and did not translocate into cells. Here, we show by live cell imaging that both MCoTI-II and kalata B1 can enter cells. Kalata B1 has the same cyclic cystine knot structural motif as MCoTI-II but differs significantly in sequence, and the mechanism by which these two peptides enter cells also differs. MCoTI-II appears to enter via macropinocytosis, presumably mediated by interaction of positively charged residues with phosphoinositides in the cell membrane, whereas kalata B1 interacts directly with the membrane by targeting phosphatidylethanolamine phospholipids, probably leading to membrane bending and vesicle formation. We also show that another plant-derived cyclic peptide, SFTI-1, can penetrate cells. SFTI-1 includes just 14 amino acids and, with the exception of its cyclic backbone, is structurally very different from the cyclotides, which are twice the size. Intriguingly, SFTI-1 does not interact with any of the phospholipids tested, and its mechanism of penetration appears to be distinct from MCoTI-II and kalata B1. The ability of diverse disulfide-rich cyclic peptides to penetrate cells enhances their potential in drug design, and we propose a new classification for them, i.e. cyclic cell-penetrating peptides.


Drug Discovery Today | 2010

Cyclotides as templates in drug design

Sónia Troeira Henriques; David J. Craik

Cyclotides are remarkably stable proteins from plants that have a range of pharmaceutical and agricultural applications based on both their various bioactivities and their potential for use as stable protein-engineering templates. This article discusses literature on pharmaceutically relevant activities of cyclotides, including anti-HIV, antimicrobial and cytotoxic activities, and evaluates their potential therapeutic applications. Their applications as templates for the design of antiangiogenic agents for the treatment of cancer and as anti-infective agents are also described. Toxic effects of cyclotides, whose native function is as insecticidal agents, can be removed by simple mutagenesis, thus rationalizing the apparent conundrum of proposing insecticidal agents as leads for human therapeutics.


Journal of Biological Chemistry | 2011

Decoding the Membrane Activity of the Cyclotide Kalata B1 THE IMPORTANCE OF PHOSPHATIDYLETHANOLAMINE PHOSPHOLIPIDS AND LIPID ORGANIZATION ON HEMOLYTIC AND ANTI-HIV ACTIVITIES

Sónia Troeira Henriques; Yen-Hua Huang; Henri G. Franquelim; Filomena A. Carvalho; Adam Johnson; Secondo Sonza; Gilda Tachedjian; Miguel A. R. B. Castanho; Norelle L. Daly; David J. Craik

Cyclotides, a large family of cyclic peptides from plants, have a broad range of biological activities, including insecticidal, cytotoxic, and anti-HIV activities. In all of these activities, cell membranes seem likely to be the primary target for cyclotides. However, the mechanistic role of lipid membranes in the activity of cyclotides remains unclear. To determine the role of lipid organization in the activity of the prototypic cyclotide, kalata B1 (kB1), and synthetic analogs, their bioactivities and affinities for model membranes were evaluated. We found that the bioactivity of kB1 is dependent on the lipid composition of target cell membranes. In particular, the activity of kB1 requires specific interactions with phospholipids containing phosphatidylethanolamine (PE) headgroups but is further modulated by nonspecific peptide-lipid hydrophobic interactions, which are favored in raft-like membranes. Negatively charged phospholipids do not favor high kB1 affinity. This lipid selectivity explains trends in antimicrobial and hemolytic activities of kB1; it does not target bacterial cell walls, which are negatively charged and lacking PE-phospholipids but can insert in the membranes of red blood cells, which have a low PE content and raft domains in their outer layer. We further show that the anti-HIV activity of kB1 is the result of its ability to target and disrupt the membranes of HIV particles, which are raft-like membranes very rich in PE-phospholipids.


Journal of Biological Chemistry | 2012

Phosphatidylethanolamine Binding Is a Conserved Feature of Cyclotide-Membrane Interactions

Sónia Troeira Henriques; Yen-Hua Huang; Miguel A. R. B. Castanho; Luis A. Bagatolli; Secondo Sonza; Gilda Tachedjian; Norelle L. Daly; David J. Craik

Background: Cyclotides are a family of plant-expressed pesticidal cyclic peptides. Results: A broad range of cyclotides specifically interact with membranes containing phosphatidylethanolamine (PE)-phospholipids. Conclusion: Cyclotide bioactivity correlates with an ability to target, insert into, and disrupt lipid membranes containing PE-phospholipids. Significance: Cyclotides constitute a new lipid-binding protein family that has potential as a scaffold to target tumor cells. Cyclotides are bioactive cyclic peptides isolated from plants that are characterized by a topologically complex structure and exceptional resistance to enzymatic or thermal degradation. With their sequence diversity, ultra-stable core structural motif, and range of bioactivities, cyclotides are regarded as a combinatorial peptide template with potential applications in drug design. The mode of action of cyclotides remains elusive, but all reported biological activities are consistent with a mechanism involving membrane interactions. In this study, a diverse set of cyclotides from the two major subfamilies, Möbius and bracelet, and an all-d mirror image form, were examined to determine their mode of action. Their lipid selectivity and membrane affinity were determined, as were their toxicities against a range of targets (red blood cells, bacteria, and HIV particles). Although they had different membrane-binding affinities, all of the tested cyclotides targeted membranes through binding to phospholipids containing phosphatidylethanolamine headgroups. Furthermore, the biological potency of the tested cyclotides broadly correlated with their ability to target and disrupt cell membranes. The finding that a broad range of cyclotides target a specific lipid suggests their categorization as a new lipid-binding protein family. Knowledge of their membrane specificity has the potential to assist in the design of novel drugs based on the cyclotide framework, perhaps allowing the targeting of peptide drugs to specific cell types.


Biochimica et Biophysica Acta | 2013

Design and characterization of novel antimicrobial peptides, R-BP100 and RW-BP100, with activity against Gram-negative and Gram-positive bacteria.

Inês M. Torcato; Yen-Hua Huang; Henri G. Franquelim; Diana Gaspar; David J. Craik; Miguel A. R. B. Castanho; Sónia Troeira Henriques

BP100 is a short cationic antimicrobial peptide with a mechanism of action dependent on peptide-lipid interactions and microbial surface charge neutralization. Although active against Gram-negative bacteria, BP100 is inactive against Gram-positive bacteria. In this study we report two newly designed BP100 analogues, RW-BP100 and R-BP100 that have the Tyr residue replaced with a Trp and/or the Lys residues replaced with an Arg. The new analogues in addition to being active against Gram-negative bacteria, possess activity against all tested Gram-positive bacteria. Mechanistic studies using atomic force microscopy, surface plasmon resonance and fluorescence methodologies reveal that the antibacterial efficiency follows the affinity for bacterial membrane. The studies suggest that the activity of BP100 and its analogues against Gram-negative bacteria is mainly driven by electrostatic interactions with the lipopolysaccharide layer and is followed by binding to and disruption of the inner membrane, whereas activity against Gram-positive bacteria, in addition to electrostatic attraction to the exposed lipoteichoic acids, requires an ability to more deeply insert in the membrane environment, which is favoured with Arg residues and is facilitated in the presence of a Trp residue. Knowledge on the mechanism of action of these antimicrobial peptides provides information that assists in the design of antimicrobials with higher efficacy and broader spectra of action, but also on the design of peptides with higher specificity if required.


Biochemical Journal | 2004

Putative role of membranes in the HIV fusion inhibitor enfuvirtide mode of action at the molecular level

Salomé Veiga; Sónia Troeira Henriques; Nuno C. Santos; Miguel A. R. B. Castanho

Partition of the intrinsically fluorescent HIV fusion inhibitor enfuvirtide into lipidic membranes is relatively high (Delta G =6.6 kcal x mol(-1)) and modulated by cholesterol. A shallow position in the lipidic matrix makes it readily available for interaction with gp41. No conformational energetic barrier prevents enfuvirtide from being active in both aqueous solution and lipidic membranes. Lipidic membranes may play a key role in the enfuvirtide biochemical mode of action.


Biophysical Journal | 2008

PrP(106-126) does not interact with membranes under physiological conditions

Sónia Troeira Henriques; Leonard K. Pattenden; Marie-Isabel Aguilar; Miguel A. R. B. Castanho

Transmissible spongiform encephalopathies are neurodegenerative diseases characterized by the accumulation of an abnormal isoform of the prion protein PrP(Sc). Its fragment 106-126 has been reported to maintain most of the pathological features of PrP(Sc), and a role in neurodegeneration has been proposed based on the modulation of membrane properties and channel formation. The ability of PrP(Sc) to modulate membranes and/or form channels in membranes has not been clearly demonstrated; however, if these processes are important, peptide-membrane interactions would be a key feature in the toxicity of PrP(Sc). In this work, the interaction of PrP(106-126) with model membranes comprising typical lipid identities, as well as more specialized lipids such as phosphatidylserine and GM1 ganglioside, was examined using surface plasmon resonance and fluorescence methodologies. This comprehensive study examines different parameters relevant to characterization of peptide-membrane interactions, including membrane charge, viscosity, lipid composition, pH, and ionic strength. We report that PrP(106-126) has a low affinity for lipid membranes under physiological conditions without evidence of membrane disturbances. Membrane insertion and leakage occur only under conditions in which strong electrostatic interactions operate. These results support the hypothesis that the physiological prion protein PrP(C) mediates PrP(106-126) toxic effects in neuronal cells.


FEBS Letters | 2005

Re-evaluating the role of strongly charged sequences in amphipathic cell-penetrating peptides: A fluorescence study using Pep-1

Sónia Troeira Henriques; Júlia Costa; Miguel A. R. B. Castanho

Cell‐penetrating peptides (CPPs) are able to translocate across biological membranes and deliver bioactive proteins. Cellular uptake and intracellular distribution of CPPs is commonly evaluated with fluorescent labels, which can alter peptide properties. The effect of carboxyfluorescein label in the Lys‐rich domain of the amphipathic CPP pep‐1, was evaluated and compared with non‐labelled pep‐1 in vitro and in vivo. A reduced membrane affinity and an endosomal‐dependent translocation mechanism, at variance with non‐labelled pep‐1, were detected. Therefore, the charged domain is not a mere enabler of peptide adsorption but has a crucial role in the translocation pathway of non‐labelled pep‐1.


Journal of Biological Chemistry | 2013

The Cyclic Cystine Ladder in θ-Defensins Is Important for Structure and Stability, but Not Antibacterial Activity

Anne C. Conibear; Norelle L. Daly; Sónia Troeira Henriques; David J. Craik

Background: θ-Defensins are antimicrobial peptides comprising a cyclic backbone and three disulfide bonds. Results: θ-Defensins retain antibacterial and membrane-binding activity, but lose structure and stability when the disulfide bonds are removed. Conclusion: Disulfide bonds are important for the stability and structure of θ-defensins, but not antibacterial activity. Significance: Understanding the role of disulfide bonds and cyclization in θ-defensins facilitates applications as peptide drug scaffolds. θ-Defensins are ribosomally synthesized cyclic peptides found in the leukocytes of some primate species and have promising applications as antimicrobial agents and scaffolds for peptide drugs. The cyclic cystine ladder motif, comprising a cyclic peptide backbone and three parallel disulfide bonds, is characteristic of θ-defensins. In this study, we explore the role of the cyclic peptide backbone and cystine ladder in the structure, stability, and activity of θ-defensins. θ-Defensin analogues with different numbers and combinations of disulfide bonds were synthesized and characterized in terms of their NMR solution structures, serum and thermal stabilities, and their antibacterial and membrane-binding activities. Whereas the structures and stabilities of the peptides were primarily dependent on the number and position of the disulfide bonds, their antibacterial and membrane-binding properties were dependent on the cyclic backbone. The results provide insights into the mechanism of action of θ-defensins and illustrate the potential of θ-defensin analogues as scaffolds for peptide drug design.

Collaboration


Dive into the Sónia Troeira Henriques's collaboration.

Top Co-Authors

Avatar

David J. Craik

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Miguel A. R. B. Castanho

Instituto de Medicina Molecular

View shared research outputs
Top Co-Authors

Avatar

Yen-Hua Huang

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Conan K. Wang

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aaron G. Poth

University of Queensland

View shared research outputs
Researchain Logo
Decentralizing Knowledge