Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sonja Hartwig is active.

Publication


Featured researches published by Sonja Hartwig.


Diabetes | 2011

Dipeptidyl Peptidase 4 Is a Novel Adipokine Potentially Linking Obesity to the Metabolic Syndrome

Daniela Lamers; Susanne Famulla; Nina Wronkowitz; Sonja Hartwig; Stefan Lehr; D. Margriet Ouwens; Kristin Eckardt; Jean-Marc Kaufman; Mikael Rydén; Stefan Müller; Franz-Georg Hanisch; Johannes Ruige; Peter Arner; Henrike Sell; J Eckel

OBJECTIVE Comprehensive proteomic profiling of the human adipocyte secretome identified dipeptidyl peptidase 4 (DPP4) as a novel adipokine. This study assessed the functional implications of the adipokine DPP4 and its association to the metabolic syndrome. RESEARCH DESIGN AND METHODS Human adipocytes and skeletal and smooth muscle cells were used to monitor DPP4 release and assess the effects of soluble DPP4 on insulin signaling. In lean and obese subjects, depot-specific expression of DPP4 and its release from adipose tissue explants were determined and correlated to parameters of the metabolic syndrome. RESULTS Fully differentiated adipocytes exhibit a substantially higher release of DPP4 compared with preadipocytes or macrophages. Direct addition of DPP4 to fat and skeletal and smooth muscle cells impairs insulin signaling. A fivefold higher level of DPP4 protein expression was seen in visceral compared with subcutaneous fat of obese patients, with no regional difference in lean subjects. DPP4 serum concentrations significantly correlated with adipocyte size. By using adipose tissue explants from lean and obese subjects, we observed a twofold increase in DPP4 release that strongly correlated with adipocyte volume and parameters of the metabolic syndrome and was decreased to the lean level after weight reduction. DPP4 released from adipose tissue correlated positively with an increasing risk score for the metabolic syndrome. CONCLUSIONS DPP4 is a novel adipokine that may impair insulin sensitivity in an autocrine and paracrine fashion. Furthermore, DPP4 release strongly correlates with adipocyte size, potentially representing an important source of DPP4 in obesity. Therefore, we suggest that DPP4 may be involved in linking adipose tissue and the metabolic syndrome.


Proteomics Clinical Applications | 2012

Adipokines: A treasure trove for the discovery of biomarkers for metabolic disorders

Stefan Lehr; Sonja Hartwig; Henrike Sell

Adipose tissue is a major endocrine organ, releasing signaling and mediator proteins, termed adipokines, via which adipose tissue communicates with other organs. Expansion of adipose tissue in obesity alters adipokine secretion which may contribute to the development of metabolic diseases. Consequently, this correlation has emphasized the importance to further characterize the adipocyte secretion profile, and several attempts have been made to characterize the complex nature of the adipose tissue secretome by utilizing diverse proteomic profiling approaches. Although the entirety of human adipokines is still incompletely characterized, to date more than 600 potentially secretory proteins were identified providing a rich source to identify putative novel biomarkers associated with metabolic diseases.


Molecular & Cellular Proteomics | 2012

Identification and Validation of Novel Adipokines Released from Primary Human Adipocytes

Stefan Lehr; Sonja Hartwig; Daniela Lamers; Susanne Famulla; Stefan Müller; Franz-Georg Hanisch; Claude Cuvelier; Johannes Ruige; Kristin Eckardt; D. Margriet Ouwens; Henrike Sell; J Eckel

Adipose tissue is a major endocrine organ, releasing signaling and mediator proteins, termed adipokines, via which adipose tissue communicates with other organs. Expansion of adipose tissue in obesity alters adipokine secretion, which may contribute to the development of metabolic diseases. Although recent profiling studies have identified numerous adipokines, the amount of overlap from these studies indicates that the adipokinome is still incompletely characterized. Therefore, we conducted a complementary protein profiling on concentrated conditioned medium derived from primary human adipocytes. SDS-PAGE/liquid chromatography-electrospray ionization tandem MS and two-dimensional SDS-PAGE/matrix-assisted laser desorption ionization/time of flight MS identified 347 proteins, 263 of which were predicted to be secreted. Fourty-four proteins were identified as novel adipokines. Furthermore, we validated the regulation and release of selected adipokines in primary human adipocytes and in serum and adipose tissue biopsies from morbidly obese patients and normal-weight controls. Validation experiments conducted for complement factor H, αB-crystallin, cartilage intermediate-layer protein, and heme oxygenase-1 show that the release and expression of these factors in adipocytes is regulated by differentiation and stimuli, which affect insulin sensitivity, as well as by obesity. Heme oxygenase-1 especially reveals to be a novel adipokine of interest. In vivo, circulating levels and adipose tissue expression of heme oxygenase-1 are significantly increased in obese subjects compared with lean controls. Collectively, our profiling study of the human adipokinome expands the list of adipokines and further highlights the pivotal role of adipokines in the regulation of multiple biological processes within adipose tissue and their potential dysregulation in obesity.


International Journal of Obesity | 2011

Pigment epithelium-derived factor (PEDF) is one of the most abundant proteins secreted by human adipocytes and induces insulin resistance and inflammatory signaling in muscle and fat cells.

Susanne Famulla; Daniela Lamers; Sonja Hartwig; Waltraud Passlack; A Horrighs; A Cramer; Stefan Lehr; Henrike Sell; Jürgen Eckel

Objective:Pigment epithelium-derived factor (PEDF) is a multifunctional protein with neurotrophic and anti-angiogenic properties. More recently it became evident that PEDF is upregulated in patients with type 2 diabetes and also contributes to insulin resistance in mice. During characterization of the secretome of in vitro differentiated human adipocytes by two-dimensional polyacrylamide gel electrophoresis and matrix-assisted laser desorption/ionization-MS, we found that PEDF is one of the most abundant proteins released by adipocytes. The aim of this study was to investigate the regulation and autocrine function of PEDF in human adipocytes and to determine its paracrine effects on human skeletal muscle cells (hSkMC) and human smooth muscle cells (hSMC).Methods and results:Human primary adipocytes secrete 130 ng ml−1 PEDF over 24 h from 1 million cells, which is extremely high as compared with adiponectin, interleukin-6 (IL-6) or IL-8. This release of PEDF is significantly higher than from other primary cells, such as adipose-tissue located macrophages (50-times), hSkMC and hSMC (5-times). PEDF protein expression significantly increases during adipogenesis, which is paralleled by increased PEDF secretion. Furthermore, tumor necrosis factor-α and hypoxia significantly downregulate PEDF protein levels. PEDF secretion was significantly reduced by troglitazone and hypoxia and significantly increased by insulin. Treatment of adipocytes and hSkMC with PEDF induced insulin resistance in adipocytes, skeletal and smooth muscle cells at the level of insulin-stimulated Akt phosphorylation, which was dose dependent and more prominent in adipocytes. Furthermore, inflammatory nuclear factor-κB (NF-κB) signaling was induced by PEDF. In hSMC, PEDF induced proliferation (1.7-fold) and acutely activated proliferative and inflammatory signaling pathways (NF-κB, p38 mitogen-activated protein kinase and mammalian target of rapamycin).Conclusion:PEDF is one of the most abundant adipokines and its secretion is inversely regulated by insulin and hypoxia. PEDF induces insulin resistance in adipocytes and hSkMC and leads to inflammatory signaling in hSMC. Because of these diverse actions, PEDF is a key adipokine, which could have an important role in diabetes and obesity-related disorders.


PLOS ONE | 2012

Liver-specific expression of transcriptionally active SREBP-1c is associated with fatty liver and increased visceral fat mass.

Birgit Knebel; Jutta Haas; Sonja Hartwig; Sylvia Jacob; Cornelia Köllmer; Ulrike Nitzgen; Dirk Muller–Wieland; Jorg Kotzka

The pathogenesis of fatty liver is not understood in detail, but lipid overflow as well as de novo lipogenesis (DNL) seem to be the key points of hepatocyte accumulation of lipids. One key transcription factor in DNL is sterol regulatory element-binding protein (SREBP)-1c. We generated mice with liver-specific over-expression of mature human SREBP-1c under control of the albumin promoter and a liver-specific enhancer (alb-SREBP-1c) to analyze systemic perturbations caused by this distinct alteration. SREBP-1c targets specific genes and causes key enzymes in DNL and lipid metabolism to be up-regulated. The alb-SREBP-1c mice developed hepatic lipid accumulation featuring a fatty liver by the age of 24 weeks under normocaloric nutrition. On a molecular level, clinical parameters and lipid-profiles varied according to the fatty liver phenotype. The desaturation index was increased compared to wild type mice. In liver, fatty acids (FA) were increased by 50% (p<0.01) and lipid composition was shifted to mono unsaturated FA, whereas lipid profile in adipose tissue or serum was not altered. Serum analyses revealed a ∼2-fold (p<0.01) increase in triglycerides and free fatty acids, and a ∼3-fold (p<0.01) increase in insulin levels, indicating insulin resistance; however, no significant cytokine profile alterations have been determined. Interestingly and unexpectedly, mice also developed adipositas with considerably increased visceral adipose tissue, although calorie intake was not different compared to control mice. In conclusion, the alb-SREBP-1c mouse model allowed the elucidation of the systemic impact of SREBP-1c as a central regulator of lipid metabolism in vivo and also demonstrated that the liver is a more active player in metabolic diseases such as visceral obesity and insulin resistance.


American Journal of Physiology-cell Physiology | 2013

Cytokine response of primary human myotubes in an in vitro exercise model

Mika Scheler; Martin Irmler; Stefan Lehr; Sonja Hartwig; Harald Staiger; Hadi Al-Hasani; Johannes Beckers; Martin Hrabé de Angelis; Hans-Ulrich Häring; Cora Weigert

Muscle contraction during exercise is a major stimulus for the release of peptides and proteins (myokines) that are supposed to take part in the beneficial adaptation to exercise. We hypothesize that application of an in vitro exercise stimulus as electric pulse stimulation (EPS) to human myotubes enables the investigation of the molecular response to exercise in a clearly defined model. We applied EPS for 24 h to primary human myotubes and studied the whole genome-wide transcriptional response as well as the release of candidate myokines. We observed 183 differentially regulated transcripts with fold changes >1.3. The transcriptional response resembles several properties of the in vivo situation in the skeletal muscle after endurance exercise, namely significant enrichment of pathways associated with interleukin and chemokine signaling, lipid metabolism, and antioxidant defense. Multiplex immunoassays verified the translation of the transcriptional response of several cytokines into high-secretion levels (IL-6, IL-8, CXCL1, LIF, CSF3, IL-1B, and TNF) and the increased secretion of further myokines such as angiopoietin-like 4. Notably, EPS did not induce the release of creatine kinase. Inhibitor studies and immunoblotting revealed the participation of ERK1/2-, JNK-, and NF-κB-dependent pathways in the upregulation of myokines. To conclude, our data highlight the importance of skeletal muscle cells as endocrine cells. This in vitro exercise model is not only suitable to identify exercise-regulated myokines, but it might be applied to primary human myotubes obtained from different muscle biopsy donors to study the molecular mechanisms of the individual response to exercise.


Archives of Physiology and Biochemistry | 2009

Combinatorial hexapeptide ligand libraries (ProteoMiner™): An innovative fractionation tool for differential quantitative clinical proteomics

Sonja Hartwig; Akos Czibere; Jorg Kotzka; Waltraud Passlack; Rainer Haas; Jürgen Eckel; Stefan Lehr

Blood serum samples are the major source for clinical proteomics approaches, which aim to identify diagnostically relevant or treatment-response related proteins. But, the presence of very high-abundance proteins and the enormous dynamic range of protein distribution hinders whole serum analysis. An innovative tool to overcome these limitations, utilizes combinatorial hexapeptide ligand libraries (ProteoMiner™). Here, we demonstrate that ProteoMiner™ can be used for comparative and quantitative analysis of complex proteomes. We spiked serum samples with increasing amounts (3 μg to 300 μg) of whole E. coli lysate, processed it with ProteoMiner™ and performed quantitative analyses of 2D-gels. We found, that the concentration of the spiked bacteria proteome, reflected by the maintained proportional spot intensities, was not altered by ProteoMiner™ treatment. Therefore, we conclude that the ProteoMiner™ technology can be used for quantitative analysis of low abundant proteins in complex biological samples.


PLOS ONE | 2012

Preventing Phosphorylation of Sterol Regulatory Element-Binding Protein 1a by MAP-Kinases Protects Mice from Fatty Liver and Visceral Obesity

Jorg Kotzka; Birgit Knebel; Jutta Haas; Lorena Kremer; Sylvia Jacob; Sonja Hartwig; Ulrike Nitzgen; Dirk Muller–Wieland

The transcription factor sterol regulatory element binding protein (SREBP)-1a plays a pivotal role in lipid metabolism. Using the SREBP-1a expressing human hepatoma cell line HepG2 we have shown previously that human SREBP-1a is phosphorylated at serine 117 by ERK-mitogen-activated protein kinases (MAPK). Using a combination of cell biology and protein chemistry approach we show that SREBP-1a is also target of other MAPK-families, i.e. c-JUN N-terminal protein kinases (JNK) or p38 stress activated MAP kinases. Serine 117 is also the major phosphorylation site in SREBP-1a for JNK. In contrast to that the major phosphorylation sites of p38 MAPK family are serine 63 and threonine 426. Functional analyses reveal that phosphorylation of SREBP-1a does not alter protein/DNA interaction. The identified phosphorylation sites are specific for both kinase families also in cellular context. To provide direct evidence that phosphorylation of SREBP-1a is a regulatory principle of biological and clinical relevance, we generated transgenic mice expressing mature transcriptionally active N-terminal domain of human SREBP–1a variant lacking all identified phosphorylaton sites designed as alb-SREBP-1aΔP and wild type SREBP-1a designed as alb-SREBP-1a liver specific under control of the albumin promoter and a liver specific enhancer. In contrast to alb-SREBP–1a mice the phosphorylation–deficient mice develop no enlarged fatty livers under normocaloric conditions. Phenotypical examination reveales a massive accumulation of adipose tissue in alb-SREBP-1a but not in the phosphorylation deficient alb-SREBP-1aΔP mice. Moreover, preventing phosphorylation of SREBP-1a protects mice also from dyslipidemia. In conclusion, phosphorylation of SREBP-1a by ERK, JNK and p38 MAPK-families resembles a biological principle and plays a significant role, in vivo.


Apoptosis | 2011

The non-steroidal anti-inflammatory drugs Sulindac sulfide and Diclofenac induce apoptosis and differentiation in human acute myeloid leukemia cells through an AP-1 dependent pathway

Raminder Singh; Ron-Patrick Cadeddu; Julia Fröbel; Christian Matthias Wilk; Ingmar Bruns; Luiz F. Zerbini; Tanja Prenzel; Sonja Hartwig; Daniela Brünnert; Thomas Schroeder; Stefan Lehr; Rainer Haas; Akos Czibere

Acute myeloid leukemia is a heterogeneous disease with varying genetic and molecular pathologies. Non-steroidal anti-inflammatory drugs (NSAIDs) have been proven to possess significant anti-proliferative potential in various cancer cells in vitro and in vivo. Hence, treatment with these agents can be utilized to study disease specific anti-proliferative pathways. In this study, a total number of 42 bone marrow derived CD34+ selected de novo AML patient samples and the AML cell lines THP-1 and HL-60 were treated with the NSAIDs Sulindac sulfide and Diclofenac. We analyzed viability, apoptosis, differentiation and addressed the molecular mechanisms involved. We found a consistent induction of apoptosis and to some extent an increased myeloid differentiation capacity in NSAID treated AML cells. Comprehensive protein and gene expression profiling of Diclofenac treated AML cells revealed transcriptional activation of GADD45α and its downstream MAPK/JNK pathway as well as increased protein levels of the caspase-3 precursor. This pointed towards a role of the c-Jun NH2-terminal kinase (JNK) in NSAID mediated apoptosis that we found indeed to be dependent on JNK activity as addition of a specific JNK-inhibitor abrogated apoptosis. Furthermore, the AP-1 transcription factor family members’ c-Jun, JunB and Fra-2 were transcriptionally activated in NSAID treated AML cells and re-expression of these transcription factors led to activation of GADD45α with induction of apoptosis. Mechanistically, we demonstrate that NSAIDs induce apoptosis in AML through a novel pathway involving increased expression of AP-1 heterodimers, which by itself is sufficient to induce GADD45α expression with consecutive activation of JNK and induction of apoptosis.


Proteomics | 2009

A critical comparison between two classical and a kit-based method for mitochondria isolation.

Sonja Hartwig; Christian Feckler; Stefan Lehr; Katrin Wallbrecht; Heike Wolgast; Dirk Müller-Wieland; Jorg Kotzka

Numerous protocols for isolation of mitochondria are available. Here, three methods for the isolation of intact mitochondria from mouse liver tissues are compared with regard to yield, purity and activity. Mitochondria were isolated by sucrose density gradient ultracentrifugation, free‐flow electrophoresis or a commercially available kit‐based method. Our analyses show that the sophisticated (and most expensive) free‐flow electrophoresis method enables isolation of intact mitochondria with an enrichment of approximately 70%. Using the classical density centrifugation method is very laborious and time‐consuming, but delivers about 57% intact mitochondria. Using standard laboratory equipment in a quick and simple procedure, the kit provides approximately 50% intact mitochondria, suitable for most standard investigations.

Collaboration


Dive into the Sonja Hartwig's collaboration.

Top Co-Authors

Avatar

Stefan Lehr

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Jorg Kotzka

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Birgit Knebel

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Hadi Al-Hasani

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Sylvia Jacob

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ulrike Nitzgen

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J Eckel

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge