Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hadi Al-Hasani is active.

Publication


Featured researches published by Hadi Al-Hasani.


Nature Genetics | 2008

Tbc1d1 mutation in lean mouse strain confers leanness and protects from diet-induced obesity

Alexandra Chadt; Katja Leicht; Atul S. Deshmukh; Lake Q. Jiang; Stephan Scherneck; Ulrike Bernhardt; Tanja Dreja; Heike Vogel; Katja Schmolz; Reinhart Kluge; Juleen R. Zierath; Claus Hultschig; Rob C. Hoeben; Annette Schürmann; Hans-Georg Joost; Hadi Al-Hasani

We previously identified Nob1 as a quantitative trait locus for high-fat diet–induced obesity and diabetes in genome-wide scans of outcross populations of obese and lean mouse strains. Additional crossbreeding experiments indicated that Nob1 represents an obesity suppressor from the lean Swiss Jim Lambert (SJL) strain. Here we identify a SJL-specific mutation in the Tbc1d1 gene that results in a truncated protein lacking the TBC Rab–GTPase-activating protein domain. TBC1D1, which has been recently linked to human obesity, is related to the insulin signaling protein AS160 and is predominantly expressed in skeletal muscle. Knockdown of TBC1D1 in skeletal muscle cells increased fatty acid uptake and oxidation, whereas overexpression of TBC1D1 had the opposite effect. Recombinant congenic mice lacking TBC1D1 showed reduced body weight, decreased respiratory quotient, increased fatty acid oxidation and reduced glucose uptake in isolated skeletal muscle. Our data strongly suggest that mutation of Tbc1d1 suppresses high-fat diet–induced obesity by increasing lipid use in skeletal muscle.


Diabetes Care | 2009

Use of Multiple Metabolic and Genetic Markers to Improve the Prediction of Type 2 Diabetes: the EPIC-Potsdam Study

Matthias B. Schulze; Cornelia Weikert; Tobias Pischon; Manuela M. Bergmann; Hadi Al-Hasani; Erwin Schleicher; Andreas Fritsche; Hans-Ulrich Häring; Heiner Boeing; Hans-Georg Joost

OBJECTIVE We investigated whether metabolic biomarkers and single nucleotide polymorphisms (SNPs) improve diabetes prediction beyond age, anthropometry, and lifestyle risk factors. RESEARCH DESIGN AND METHODS A case-cohort study within a prospective study was designed. We randomly selected a subcohort (n = 2,500) from 26,444 participants, of whom 1,962 were diabetes free at baseline. Of the 801 incident type 2 diabetes cases identified in the cohort during 7 years of follow-up, 579 remained for analyses after exclusions. Prediction models were compared by receiver operatoring characteristic (ROC) curve and integrated discrimination improvement. RESULTS Case-control discrimination by the lifestyle characteristics (ROC-AUC: 0.8465) improved with plasma glucose (ROC-AUC: 0.8672, P < 0.001) and A1C (ROC-AUC: 0.8859, P < 0.001). ROC-AUC further improved with HDL cholesterol, triglycerides, γ-glutamyltransferase, and alanine aminotransferase (0.9000, P = 0.002). Twenty SNPs did not improve discrimination beyond these characteristics (P = 0.69). CONCLUSIONS Metabolic markers, but not genotyping for 20 diabetogenic SNPs, improve discrimination of incident type 2 diabetes beyond lifestyle risk factors.


Journal of Biological Chemistry | 1998

Endocytosis of the glucose transporter GLUT4 is mediated by the GTPase dynamin.

Hadi Al-Hasani; Cynthia S. Hinck; Samuel W. Cushman

To study the role of the GTPase dynamin in GLUT4 intracellular recycling, we have overexpressed dynamin−1 wild type and a GTPase-negative mutant (K44A) in primary rat adipose cells. Transfection was accomplished by electroporation using an hemagglutinin (HA)-tagged GLUT4 as a reporter protein. In cells expressing HA-GLUT4 alone, insulin results in an ≈7-fold increase in cell surface anti-HA antibody binding. Studies with wortmannin indicate that the kinetics of HA-GLUT4-trafficking parallel those of the native GLUT4 and in addition, that newly synthesized HA-GLUT4 goes to the plasma membrane before being sorted into the insulin-responsive compartments. Short term (4 h) coexpression of dynamin-K44A and HA-GLUT4 increases the amount of cell surface HA-GLUT4 in both the basal and insulin-stimulated states. Under conditions of maximal expression of dynamin-K44A (24 h), most or all of the intracellular HA-GLUT4 appears to be present on the cell surface in the basal state, and insulin has no further effect. Measurements of the kinetics of HA-GLUT4 endocytosis show that dynamin-K44A blocks internalization of the glucose transporters. In contrast, expression of dynamin wild type decreases the amount of cell surface HA-GLUT4 in both the basal and insulin-stimulated states. These data demonstrate that the endocytosis of GLUT4 is largely mediated by processes which require dynamin.


International Journal of Obesity | 2007

A meta-analysis of quantitative trait loci associated with body weight and adiposity in mice

Wuschke S; Dahm S; Schmidt C; Joost Hg; Hadi Al-Hasani

Objective:Cross-breeding experiments with different mouse strains have successfully been used by many groups to identify genetic loci that predispose for obesity. In order to provide a statistical assessment of these quantitative trait loci (QTL) as a basis for a systematic investigation of candidate genes, we have performed a meta-analysis of genome-wide linkage scans for body weight and body fat.Data:From a total of 34 published mouse cross-breeding experiments, we compiled a list of 162 non-redundant QTL for body weight and 117 QTL for fat weight and body fat percentage. Collectively, these studies include data from 42 different parental mouse strains and >14 500 individual mice.Methods:The results of the studies were analyzed using the truncated product method (TPM).Results:The analysis revealed significant evidence (logarithm of odds (LOD) score >4.3) for linkage of body weight and adiposity to 49 different segments of the mouse genome. The most prominent regions with linkage for body weight and body fat (LOD scores 14.8–21.8) on chromosomes 1, 2, 7, 11, 15, and 17 contain a total of 58 QTL for body weight and body fat. At least 34 candidate genes and genetic loci, which have been implicated in regulation of body weight and body composition in rodents and/or humans, are found in these regions, including CCAAT/enhancer-binding protein alpha (C/EBPA), sterol regulatory element-binding transcription factor 1 (SREBP-1), peroxisome proliferator activator receptor delta (PPARD), and hydroxysteroid 11-beta dehydrogenase 1 (HSD11B1). Our results demonstrate the presence of numerous distinct consensus QTL regions with highly significant LOD scores that control body weight and body composition. An interactive physical map of the QTL is available online at http://www.obesitygenes.org.


American Journal of Physiology-cell Physiology | 2013

Cytokine response of primary human myotubes in an in vitro exercise model

Mika Scheler; Martin Irmler; Stefan Lehr; Sonja Hartwig; Harald Staiger; Hadi Al-Hasani; Johannes Beckers; Martin Hrabé de Angelis; Hans-Ulrich Häring; Cora Weigert

Muscle contraction during exercise is a major stimulus for the release of peptides and proteins (myokines) that are supposed to take part in the beneficial adaptation to exercise. We hypothesize that application of an in vitro exercise stimulus as electric pulse stimulation (EPS) to human myotubes enables the investigation of the molecular response to exercise in a clearly defined model. We applied EPS for 24 h to primary human myotubes and studied the whole genome-wide transcriptional response as well as the release of candidate myokines. We observed 183 differentially regulated transcripts with fold changes >1.3. The transcriptional response resembles several properties of the in vivo situation in the skeletal muscle after endurance exercise, namely significant enrichment of pathways associated with interleukin and chemokine signaling, lipid metabolism, and antioxidant defense. Multiplex immunoassays verified the translation of the transcriptional response of several cytokines into high-secretion levels (IL-6, IL-8, CXCL1, LIF, CSF3, IL-1B, and TNF) and the increased secretion of further myokines such as angiopoietin-like 4. Notably, EPS did not induce the release of creatine kinase. Inhibitor studies and immunoblotting revealed the participation of ERK1/2-, JNK-, and NF-κB-dependent pathways in the upregulation of myokines. To conclude, our data highlight the importance of skeletal muscle cells as endocrine cells. This in vitro exercise model is not only suitable to identify exercise-regulated myokines, but it might be applied to primary human myotubes obtained from different muscle biopsy donors to study the molecular mechanisms of the individual response to exercise.


BMC Genomics | 2008

Meta-Analysis Approach identifies Candidate Genes and associated Molecular Networks for Type-2 Diabetes Mellitus

Axel Rasche; Hadi Al-Hasani; Ralf Herwig

BackgroundMultiple functional genomics data for complex human diseases have been published and made available by researchers worldwide. The main goal of these studies is the detailed analysis of a particular aspect of the disease. Complementary, meta-analysis approaches try to extract supersets of disease genes and interaction networks by integrating and combining these individual studies using statistical approaches.ResultsHere we report on a meta-analysis approach that integrates data of heterogeneous origin in the domain of type-2 diabetes mellitus (T2DM). Different data sources such as DNA microarrays and, complementing, qualitative data covering several human and mouse tissues are integrated and analyzed with a Bootstrap scoring approach in order to extract disease relevance of the genes. The purpose of the meta-analysis is two-fold: on the one hand it identifies a group of genes with overall disease relevance indicating common, tissue-independent processes related to the disease; on the other hand it identifies genes showing specific alterations with respect to a single study. Using a random sampling approach we computed a core set of 213 T2DM genes across multiple tissues in human and mouse, including well-known genes such as Pdk4, Adipoq, Scd, Pik3r1, Socs2 that monitor important hallmarks of T2DM, for example the strong relationship between obesity and insulin resistance, as well as a large fraction (128) of yet barely characterized novel candidate genes. Furthermore, we explored functional information and identified cellular networks associated with this core set of genes such as pathway information, protein-protein interactions and gene regulatory networks. Additionally, we set up a web interface in order to allow users to screen T2DM relevance for any – yet non-associated – gene.ConclusionIn our paper we have identified a core set of 213 T2DM candidate genes by a meta-analysis of existing data sources. We have explored the relation of these genes to disease relevant information and – using enrichment analysis – we have identified biological networks on different layers of cellular information such as signaling and metabolic pathways, gene regulatory networks and protein-protein interactions. The web interface is accessible via http://t2dm-geneminer.molgen.mpg.de.


American Journal of Physiology-endocrinology and Metabolism | 2012

The Rab-GTPase-activating protein TBC1D1 regulates skeletal muscle glucose metabolism

Ferenc Szekeres; Alexandra Chadt; Robby Zachariah Tom; Atul S. Deshmukh; Alexander V. Chibalin; Marie Björnholm; Hadi Al-Hasani; Juleen R. Zierath

The Rab-GTPase-activating protein TBC1D1 has emerged as a novel candidate involved in metabolic regulation. Our aim was to determine whether TBC1D1 is involved in insulin as well as energy-sensing signals controlling skeletal muscle metabolism. TBC1D1-deficient congenic B6.SJL-Nob1.10 (Nob1.10(SJL)) and wild-type littermates were studied. Glucose and insulin tolerance, glucose utilization, hepatic glucose production, and tissue-specific insulin-mediated glucose uptake were determined. The effect of insulin, AICAR, or contraction on glucose transport was studied in isolated skeletal muscle. Glucose and insulin tolerance tests were normal in TBC1D1-deficient Nob1.10(SJL) mice, yet the 4-h-fasted insulin concentration was increased. Insulin-stimulated peripheral glucose utilization during a euglycemic hyperinsulinemic clamp was similar between genotypes, whereas the suppression of hepatic glucose production was increased in TBC1D1-deficient mice. In isolated extensor digitorum longus (EDL) but not soleus muscle, glucose transport in response to insulin, AICAR, or contraction was impaired by TBC1D1 deficiency. The reduction in glucose transport in EDL muscle from TBC1D1-deficient Nob1.10(SJL) mice may be explained partly by a 50% reduction in GLUT4 protein, since proximal signaling at the level of Akt, AMPK, and acetyl-CoA carboxylase (ACC) was unaltered. Paradoxically, in vivo insulin-stimulated 2-deoxyglucose uptake was increased in EDL and tibialis anterior muscle from TBC1D1-deficient mice. In conclusion, TBC1D1 plays a role in regulation of glucose metabolism in skeletal muscle. Moreover, functional TBC1D1 is required for AICAR- or contraction-induced metabolic responses, implicating a role in energy-sensing signals.


PLOS Genetics | 2009

Positional cloning of zinc finger domain transcription factor Zfp69, a candidate gene for obesity-associated diabetes contributed by mouse locus Nidd/SJL

Stephan Scherneck; Matthias Nestler; Heike Vogel; Matthias Blüher; Marcel Dominique Block; Mauricio Berriel Diaz; Stephan Herzig; Nadja Schulz; Marko Teichert; Sina Tischer; Hadi Al-Hasani; Reinhart Kluge; Annette Schürmann; Hg Joost

Polygenic type 2 diabetes in mouse models is associated with obesity and results from a combination of adipogenic and diabetogenic alleles. Here we report the identification of a candidate gene for the diabetogenic effect of a QTL (Nidd/SJL, Nidd1) contributed by the SJL, NON, and NZB strains in outcross populations with New Zealand Obese (NZO) mice. A critical interval of distal chromosome 4 (2.1 Mbp) conferring the diabetic phenotype was identified by interval-specific congenic introgression of SJL into diabetes-resistant C57BL/6J, and subsequent reporter cross with NZO. Analysis of the 10 genes in the critical interval by sequencing, qRT–PCR, and RACE–PCR revealed a striking allelic variance of Zfp69 encoding zinc finger domain transcription factor 69. In NZO and C57BL/6J, a retrotransposon (IAPLTR1a) in intron 3 disrupted the gene by formation of a truncated mRNA that lacked the coding sequence for the KRAB (Krüppel-associated box) and Znf-C2H2 domains of Zfp69, whereas the diabetogenic SJL, NON, and NZB alleles generated a normal mRNA. When combined with the B6.V-Lepob background, the diabetogenic Zfp69SJL allele produced hyperglycaemia, reduced gonadal fat, and increased plasma and liver triglycerides. mRNA levels of the human orthologue of Zfp69, ZNF642, were significantly increased in adipose tissue from patients with type 2 diabetes. We conclude that Zfp69 is the most likely candidate for the diabetogenic effect of Nidd/SJL, and that retrotransposon IAPLTR1a contributes substantially to the genetic heterogeneity of mouse strains. Expression of the transcription factor in adipose tissue may play a role in the pathogenesis of type 2 diabetes.


Journal of Biological Chemistry | 2013

Intestinal Dehydroascorbic acid (DHA) transport mediated by the facilitative sugar transporters, GLUT2 and GLUT8

Christopher P. Corpe; Peter Eck; Jin Wang; Hadi Al-Hasani; Mark Levine

Background: The molecular identity of the intestinal vitamin C transporters is incomplete. Results: Facilitative sugar transporters, GLUT2 and GLUT8, transport dehydroascorbic acid, the oxidized form of vitamin C. Conclusion: Intestinal vitamin C absorption can occur via facilitative sugar transporters. Significance: Vitamin C bioavailability may be inhibited by dietary factors, such as glucose and phytochemicals. Intestinal vitamin C (Asc) absorption was believed to be mediated by the Na+-dependent ascorbic acid transporter SVCT1. However, Asc transport across the intestines of SVCT1 knock-out mice is normal indicating that alternative ascorbic acid transport mechanisms exist. To investigate these mechanisms, rodents were gavaged with Asc or its oxidized form dehydroascorbic acid (DHA), and plasma Asc concentrations were measured. Asc concentrations doubled following DHA but not Asc gavage. We hypothesized that the transporters responsible were facilitated glucose transporters (GLUTs). Using Xenopus oocyte expression, we investigated whether facilitative glucose transporters GLUT2 and GLUT5–12 transported DHA. Only GLUT2 and GLUT8, known to be expressed in intestines, transported DHA with apparent transport affinities (Km) of 2.33 and 3.23 mm and maximal transport rates (Vmax) of 25.9 and 10.1 pmol/min/oocyte, respectively. Maximal rates for DHA transport mediated by GLUT2 and GLUT8 in oocytes were lower than maximal rates for 2-deoxy-d-glucose (Vmax of 224 and 32 pmol/min/oocyte for GLUT2 and GLUT8, respectively) and fructose (Vmax of 406 and 116 pmol/min/oocyte for GLUT2 and GLUT8, respectively). These findings may be explained by differences in the exofacial binding of substrates, as shown by inhibition studies with ethylidine glucose. DHA transport activity in GLUT2- and GLUT8-expressing oocytes was inhibited by glucose, fructose, and by the flavonoids phloretin and quercetin. These studies indicate intestinal DHA transport may be mediated by the facilitative sugar transporters GLUT2 and GLUT8. Furthermore, dietary sugars and flavonoids in fruits and vegetables may modulate Asc bioavailability via inhibition of small intestinal GLUT2 and GLUT8.


Endocrinology | 2013

Conventional Knockout of Tbc1d1 in Mice Impairs Insulin- and AICAR-Stimulated Glucose Uptake in Skeletal Muscle

Janine Dokas; Alexandra Chadt; Tobias Nolden; Heinz Himmelbauer; Juleen R. Zierath; Hans-Georg Joost; Hadi Al-Hasani

In the obesity-resistant SJL mouse strain, we previously identified a naturally occurring loss-of-function mutation in the gene for Tbc1d1. Characterization of recombinant inbred mice that carried the Tbc1d1(SJL) allele on a C57BL/6J background indicated that loss of TBC1D1 protects from obesity, presumably by increasing the use of fat as energy source. To provide direct functional evidence for an involvement of TBC1D1 in energy substrate metabolism, we generated and characterized conventional Tbc1d1 knockout mice. TBC1D1-deficient mice showed moderately reduced body weight, decreased respiratory quotient, and an elevated resting metabolic rate. Ex vivo analysis of intact isolated skeletal muscle revealed a severe impairment in insulin- and AICAR-stimulated glucose uptake in glycolytic extensor digitorum longus muscle and a substantially increased rate of fatty acid oxidation in oxidative soleus muscle. Our results provide direct evidence that TBC1D1 plays a major role in glucose and lipid utilization, and energy substrate preference in skeletal muscle.

Collaboration


Dive into the Hadi Al-Hasani's collaboration.

Top Co-Authors

Avatar

Alexandra Chadt

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Stefan Lehr

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Sonja Hartwig

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Birgit Knebel

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jorg Kotzka

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar

Michael Roden

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Torben Stermann

University of Düsseldorf

View shared research outputs
Researchain Logo
Decentralizing Knowledge