Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sonny C. Hsiao is active.

Publication


Featured researches published by Sonny C. Hsiao.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Integrated microfluidic bioprocessor for single-cell gene expression analysis

Nicholas Toriello; Erik S. Douglas; Numrin Thaitrong; Sonny C. Hsiao; Matthew B. Francis; Carolyn R. Bertozzi; Richard A. Mathies

An integrated microdevice is developed for the analysis of gene expression in single cells. The system captures a single cell, transcribes and amplifies the mRNA, and quantitatively analyzes the products of interest. The key components of the microdevice include integrated nanoliter metering pumps, a 200-nL RT-PCR reactor with a single-cell capture pad, and an affinity capture matrix for the purification and concentration of products that is coupled to a microfabricated capillary electrophoresis separation channel for product analysis. Efficient microchip integration of these processes enables the sensitive and quantitative examination of gene expression variation at the single-cell level. This microdevice is used to measure siRNA knockdown of the GAPDH gene in individual Jurkat cells. Single-cell measurements suggests the presence of 2 distinct populations of cells with moderate (≈50%) or complete (≈0%) silencing. This stochastic variation in gene expression and silencing within single cells is masked by conventional bulk measurements.


Journal of the American Chemical Society | 2009

Viral Capsid DNA Aptamer Conjugates as Multivalent Cell-Targeting Vehicles

Gary J. Tong; Sonny C. Hsiao; Zachary M. Carrico; Matthew B. Francis

Nucleic acid aptamers offer significant potential as convenient and evolvable targeting groups for drug delivery. To attach them to the surface of a genome-free viral capsid carrier, an efficient oxidative coupling strategy has been developed. The method involves the periodate-mediated reaction of phenylene diamine substituted oligonucleotides with aniline groups installed on the outer surface of the capsid shells. Up to 60 DNA strands can be attached to each viral capsid with no apparent loss of base-pairing capabilities or protein stability. The ability of the capsids to bind specific cellular targets was demonstrated through the attachment of a 41-nucleotide sequence that targets a tyrosine kinase receptor on Jurkat T cells. After the installation of a fluorescent dye on the capsid interior, capsids bearing the cell-targeting sequence showed significant levels of binding to the cells relative to those of control samples. Colocalization experiments using confocal microscopy indicated that the capsids were endocytosed and trafficked to lysosomes for degradation. These observations suggest that aptamer-labeled capsids could be used for the targeted drug delivery of acid-labile prodrugs that would be preferentially released upon lysosomal acidification.


ACS Nano | 2010

Dual-Surface Modified Virus Capsids for Targeted Delivery of Photodynamic Agents to Cancer Cells

Nicholas Stephanopoulos; Gary J. Tong; Sonny C. Hsiao; Matthew B. Francis

Bacteriophage MS2 was used to construct a targeted, multivalent photodynamic therapy vehicle for the treatment of Jurkat leukemia T cells. The self-assembling spherical virus capsid was modified on the interior surface with up to 180 porphyrins capable of generating cytotoxic singlet oxygen upon illumination. The exterior of the capsid was modified with ∼20 copies of a Jurkat-specific aptamer using an oxidative coupling reaction targeting an unnatural amino acid. The capsids were able to target and selectively kill more than 76% of the Jurkat cells after only 20 min of illumination. Capsids modified with a control DNA strand did not target Jurkat cells, and capsids modified with the aptamer were found to be specific for Jurkat cells over U266 cells (a control B cell line). The doubly modified capsids were also able to kill Jurkat cells selectively even when mixed with erythrocytes, suggesting the possibility of using our system to target blood-borne cancers or other pathogens in the blood supply.


Langmuir | 2009

Direct Cell Surface Modification with DNA for the Capture of Primary Cells and the Investigation of Myotube Formation on Defined Patterns

Sonny C. Hsiao; Betty J. Shum; Hiroaki Onoe; Erik S. Douglas; Zev J. Gartner; Richard A. Mathies; Carolyn R. Bertozzi; Matthew B. Francis

Previously, we reported a method for the attachment of living cells to surfaces through the hybridization of synthetic DNA strands attached to their plasma membrane. The oligonucleotides were introduced using metabolic carbohydrate engineering, which allowed reactive tailoring of the cell surface glycans for chemoselective bioconjugation. While this method is highly effective for cultured mammalian cells, we report here a significant improvement of this technique that allows the direct modification of cell surfaces with NHS-DNA conjugates. This method is rapid and efficient, allowing virtually any mammalian cell to be patterned on surfaces bearing complementary DNA in under 1 h. We demonstrate this technique using several types of cells that are generally incompatible with integrin-targeting approaches, including red blood cells and primary T-cells. Cardiac myoblasts were also captured. The immobilization procedure itself was found not to activate primary T-cells, in contrast to previously reported antibody- and lectin-based methods. Myoblast cells were patterned with high efficiency and remained undifferentiated after surface attachment. Upon changing to differentiation media, myotubes formed in the center of the patterned areas with an excellent degree of edge alignment. The availability of this new protocol greatly expands the applicability of the DNA-based attachment strategy for the generation of artificial tissues and the incorporation of living cells into device settings.


ACS Nano | 2012

N-Terminal Labeling Of Filamentous Phage To Create Cancer Marker Imaging Agents

Zachary M. Carrico; Michelle E. Farkas; Yu Zhou; Sonny C. Hsiao; James D. Marks; Harshal A. Chokhawala; Douglas S. Clark; Matthew B. Francis

We report a convenient new technique for the labeling of filamentous phage capsid proteins. Previous reports have shown that phage coat protein residues can be modified, but the lack of chemically distinct amino acids in the coat protein sequences makes it difficult to attach high levels of synthetic molecules without altering the binding capabilities of the phage. To modify the phage with polymer chains, imaging groups, and other molecules, we have developed chemistry to convert the N-terminal amines of the ~4200 coat proteins into ketone groups. These sites can then serve as chemospecific handles for the attachment of alkoxyamine groups through oxime formation. Specifically, we demonstrate the attachment of fluorophores and up to 3000 molecules of 2 kDa poly(ethylene glycol) (PEG2k) to each of the phage capsids without significantly affecting the binding of phage-displayed antibody fragments to EGFR and HER2 (two important epidermal growth factor receptors). We also demonstrate the utility of the modified phage for the characterization of breast cancer cells using multicolor fluorescence microscopy. Due to the widespread use of filamentous phage as display platforms for peptide and protein evolution, we envision that the ability to attach large numbers of synthetic functional groups to their coat proteins will be of significant value to the biological and materials communities.


Angewandte Chemie | 2008

DNA-Coated AFM Cantilevers for the Investigation of Cell Adhesion and the Patterning of Live Cells**

Sonny C. Hsiao; Ailey Crow; Carolyn R. Bertozzi; Daniel A. Fletcher; Matthew B. Francis

Measurement of receptor adhesion strength requires the precise manipulation of single cells on a contact surface. To attach live cells to a moveable probe, DNA sequences complementary to strands displayed on the plasma membrane are introduced onto AFM cantilevers (see picture, bp=base pairs). The strength of the resulting linkages can be tuned by varying the length of DNA strands, allowing for controlled transport of the cells


Lab on a Chip | 2009

DNA-barcode directed capture and electrochemical metabolic analysis of single mammalian cells on a microelectrode array

Erik S. Douglas; Sonny C. Hsiao; Hiroaki Onoe; Carolyn R. Bertozzi; Matthew B. Francis; Richard A. Mathies

A microdevice is developed for DNA-barcode directed capture of single cells on an array of pH-sensitive microelectrodes for metabolic analysis. Cells are modified with membrane-bound single-stranded DNA, and specific single-cell capture is directed by the complementary strand bound in the sensor area of the iridium oxide pH microelectrodes within a microfluidic channel. This bifunctional microelectrode array is demonstrated for the pH monitoring and differentiation of primary T cells and Jurkat T lymphoma cells. Single Jurkat cells exhibited an extracellular acidification rate of 11 milli-pH min(-1), while primary T cells exhibited only 2 milli-pH min(-1). This system can be used to capture non-adherent cells specifically and to discriminate between visually similar healthy and cancerous cells in a heterogeneous ensemble based on their altered metabolic properties.


Nature Communications | 2016

Interrogating cellular fate decisions with high-throughput arrays of multiplexed cellular communities

Sisi Chen; Andrew W. Bremer; Olivia Scheideler; Yun Suk Na; Michael E. Todhunter; Sonny C. Hsiao; Prithvi R. Bomdica; Michel M. Maharbiz; Zev J. Gartner; David V. Schaffer

Recreating heterotypic cell–cell interactions in vitro is key to dissecting the role of cellular communication during a variety of biological processes. This is especially relevant for stem cell niches, where neighbouring cells provide instructive inputs that govern cell fate decisions. To investigate the logic and dynamics of cell–cell signalling networks, we prepared heterotypic cell–cell interaction arrays using DNA-programmed adhesion. Our platform specifies the number and initial position of up to four distinct cell types within each array and offers tunable control over cell-contact time during long-term culture. Here, we use the platform to study the dynamics of single adult neural stem cell fate decisions in response to competing juxtacrine signals. Our results suggest a potential signalling hierarchy between Delta-like 1 and ephrin-B2 ligands, as neural stem cells adopt the Delta-like 1 phenotype of stem cell maintenance on simultaneous presentation of both signals.


PLOS ONE | 2013

Real time assays for quantifying cytotoxicity with single cell resolution.

Sonny C. Hsiao; Hong Liu; Taylor A. Holstlaw; Cheng Liu; Catherine Y. Francis; Matthew B. Francis

A new live cell-based assay platform has been developed for the determination of complement dependent cytotoxicity (CDC), antibody dependent cellular cytotoxicity (ADCC), and overall cytotoxicity in human whole blood. In these assays, the targeted tumor cell populations are first labeled with fluorescent Cell Tracker dyes and immobilized using a DNA-based adhesion technique. This allows the facile generation of live cell arrays that are arranged arbitrarily or in ordered rectilinear patterns. Following the addition of antibodies in combination with serum, PBMCs, or whole blood, cell death within the targeted population can be assessed by the addition of propidium iodide (PI) as a viability probe. The array is then analyzed with an automated microscopic imager. The extent of cytotoxicity can be quantified accurately by comparing the number of surviving target cells to the number of dead cells labeled with both Cell Tracker and PI. Excellent batch-to-batch reproducibility has been achieved using this method. In addition to allowing cytotoxicity analysis to be conducted in real time on a single cell basis, this new assay overcomes the need for hazardous radiochemicals. Fluorescently-labeled antibodies can be used to identify individual cells that bear the targeted receptors, but yet resist the CDC and ADCC mechanisms. This new approach also allows the use of whole blood in cytotoxicity assays, providing an assessment of antibody efficacy in a highly relevant biological mixture. Given the rapid development of new antibody-based therapeutic agents, this convenient assay platform is well-poised to streamline the drug discovery process significantly.


Journal of Visualized Experiments | 2014

Real-time cytotoxicity assays in human whole blood.

Ching-Wen Hsiao; Yen-Ting Lo; Hong Liu; Sonny C. Hsiao

A live cell-based whole blood cytotoxicity assay (WCA) that allows access to temporal information of the overall cell cytotoxicity is developed with high-throughput cell positioning technology. The targeted tumor cell populations are first preprogrammed to immobilization into an array format, and labeled with green fluorescent cytosolic dyes. Following the cell array formation, antibody drugs are added in combination with human whole blood. Propidium iodide (PI) is then added to assess cell death. The cell array is analyzed with an automatic imaging system. While cytosolic dye labels the targeted tumor cell populations, PI labels the dead tumor cell populations. Thus, the percentage of target cancer cell killing can be quantified by calculating the number of surviving targeted cells to the number of dead targeted cells. With this method, researchers are able to access time-dependent and dose-dependent cell cytotoxicity information. Remarkably, no hazardous radiochemicals are used. The WCA presented here has been tested with lymphoma, leukemia, and solid tumor cell lines. Therefore, WCA allows researchers to assess drug efficacy in a highly relevant ex vivo condition.

Collaboration


Dive into the Sonny C. Hsiao's collaboration.

Top Co-Authors

Avatar

Matthew B. Francis

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hong Liu

University of California

View shared research outputs
Top Co-Authors

Avatar

Zev J. Gartner

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cheng Liu

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary J. Tong

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge