Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sonya G. Lehto is active.

Publication


Featured researches published by Sonya G. Lehto.


The Journal of Neuroscience | 2007

The Vanilloid Receptor TRPV1 Is Tonically Activated In Vivo and Involved in Body Temperature Regulation

Narender R. Gavva; Anthony W. Bannon; Sekhar Surapaneni; David N. Hovland; Sonya G. Lehto; Anu Gore; Todd Juan; Hong Deng; Bora Han; Lana Klionsky; Rongzhen Kuang; April Le; Rami Tamir; Jue Wang; Brad Youngblood; Dawn Zhu; Mark H. Norman; Ella Magal; James J. S. Treanor; Jean-Claude Louis

The vanilloid receptor TRPV1 (transient receptor potential vanilloid 1) is a cation channel that serves as a polymodal detector of pain-producing stimuli such as capsaicin, protons (pH <5.7), and heat. TRPV1 antagonists block pain behaviors in rodent models of inflammatory, neuropathic, and cancer pain, suggesting their utility as analgesics. Here, we report that TRPV1 antagonists representing various chemotypes cause an increase in body temperature (hyperthermia), identifying a potential issue for their clinical development. Peripheral restriction of antagonists did not eliminate hyperthermia, suggesting that the site of action is predominantly outside of the blood–brain barrier. Antagonists that are ineffective against proton activation also caused hyperthermia, indicating that blocking capsaicin and heat activation of TRPV1 is sufficient to produce hyperthermia. All TRPV1 antagonists evaluated here caused hyperthermia, suggesting that TRPV1 is tonically activated in vivo and that TRPV1 antagonism and hyperthermia are not separable. TRPV1 antagonists caused hyperthermia in multiple species (rats, dogs, and monkeys), demonstrating that TRPV1 function in thermoregulation is conserved from rodents to primates. Together, these results indicate that tonic TRPV1 activation regulates body temperature.


Journal of Pharmacology and Experimental Therapeutics | 2008

Antihyperalgesic Effects of (R,E)-N-(2-Hydroxy-2,3-dihydro-1H-inden-4-yl)-3-(2-(piperidin-1-yl)-4-(trifluoromethyl)phenyl)-acrylamide (AMG8562), a Novel Transient Receptor Potential Vanilloid Type 1 Modulator That Does Not Cause Hyperthermia in Rats

Sonya G. Lehto; Rami Tamir; Deng H; Lana Klionsky; Rongzhen Kuang; Le A; Lee D; Jean-Claude Louis; Ella Magal; Manning Bh; Rubino J; Sekhar Surapaneni; Tamayo N; Wang T; Judy Wang; Weiya Wang; Youngblood B; Zhang M; Dawn Zhu; Mark H. Norman; Narender R. Gavva

Antagonists of the vanilloid receptor TRPV1 (transient receptor potential vanilloid type 1) have been reported to produce antihyperalgesic effects in animal models of pain. These antagonists, however, also caused concomitant hyperthermia in rodents, dogs, monkeys, and humans. Antagonist-induced hyperthermia was not observed in TRPV1 knockout mice, suggesting that the hyperthermic effect is exclusively mediated through TRPV1. Since antagonist-induced hyperthermia is considered a hurdle for developing TRPV1 antagonists as therapeutics, we investigated the possibility of eliminating hyperthermia while maintaining antihyperalgesia. Here, we report four potent and selective TRPV1 modulators with unique in vitro pharmacology profiles (profiles A through D) and their respective effects on body temperature. We found that profile C modulator, (R,E)-N-(2-hydroxy-2,3-dihydro-1H-inden-4-yl)-3-(2-(piperidin-1-yl)-4-(trifluoromethyl)phenyl)acrylamide (AMG8562), blocks capsaicin activation of TRPV1, does not affect heat activation of TRPV1, potentiates pH 5 activation of TRPV1 in vitro, and does not cause hyperthermia in vivo in rats. We further profiled AMG8562 in an on-target (agonist) challenge model, rodent pain models, and tested for its side effects. We show that AMG8562 significantly blocks capsaicin-induced flinching behavior, produces statistically significant efficacy in complete Freunds adjuvant- and skin incision-induced thermal hyperalgesia, and acetic acid-induced writhing models, with no profound effects on locomotor activity. Based on the data shown here, we conclude that it is feasible to modulate TRPV1 in a manner that does not cause hyperthermia while maintaining efficacy in rodent pain models.


Journal of Pharmacology and Experimental Therapeutics | 2007

Repeated administration of vanilloid receptor TRPV1 antagonists attenuates hyperthermia elicited by TRPV1 blockade

Narender R. Gavva; Anthony W. Bannon; David N. Hovland; Sonya G. Lehto; Lana Klionsky; Sekhar Surapaneni; David Immke; Charles Henley; Leyla Arik; Annette Bak; James O. Davis; Nadia Ernst; Gal Hever; Rongzhen Kuang; Licheng Shi; Rami Tamir; Jue Wang; Weiya Wang; Gary Zajic; Dawn Zhu; Mark H. Norman; Jean-Claude Louis; Ella Magal; James J. S. Treanor

Capsaicin, the active ingredient in some pain-relieving creams, is an agonist of a nonselective cation channel known as the transient receptor potential vanilloid type 1 (TRPV1). The pain-relieving mechanism of capsaicin includes desensitization of the channel, suggesting that TRPV1 antagonism may be a viable pain therapy approach. In agreement with the above notion, several TRPV1 antagonists have been reported to act as antihyperalgesics. Here, we report the in vitro and in vivo characterization of a novel and selective TRPV1 antagonist, N-(4-[6-(4-trifluoromethyl-phenyl)-pyrimidin-4-yloxy]-benzothiazol-2-yl)-acetamide I (AMG 517), and compare its pharmacology with that of a closely related analog, tert-butyl-2-(6-([2-(acetylamino)-1,3-benzothiazol-4-yl]oxy)pyrimidin-4-yl)-5-(trifluoromethyl)phenylcarbamate (AMG8163). Both AMG 517 and AMG8163 potently and completely antagonized capsaicin, proton, and heat activation of TRPV1 in vitro and blocked capsaicin-induced flinch in rats in vivo. To support initial clinical investigations, AMG 517 was evaluated in a comprehensive panel of toxicology studies that included in vivo assessments in rodents, dogs, and monkeys. The toxicology studies indicated that AMG 517 was generally well tolerated; however, transient increases in body temperature (hyperthermia) were observed in all species after AMG 517 dosing. To further investigate this effect, we tested and showed that the antipyretic, acetaminophen, suppressed the hyperthermia caused by TRPV1 blockade. We also showed that repeated administration of TRPV1 antagonists attenuated the hyperthermia response, whereas the efficacy in capsaicin-induced flinch model was maintained. In conclusion, these studies suggest that the transient hyperthermia elicited by TRPV1 blockade may be manageable in the development of TRPV1 antagonists as therapeutic agents. However, the impact of TRPV1 antagonist-induced hyperthermia on their clinical utility is still unknown.


Molecular Pain | 2012

Transient receptor potential melastatin 8 (TRPM8) channels are involved in body temperature regulation

Narender R. Gavva; Carl Davis; Sonya G. Lehto; Sara Rao; Weiya Wang; Dawn Zhu

BackgroundTransient receptor potential cation channel subfamily M member 8 (TRPM8) is activated by cold temperature in vitro and has been demonstrated to act as a ‘cold temperature sensor’ in vivo. Although it is known that agonists of this ‘cold temperature sensor’, such as menthol and icilin, cause a transient increase in body temperature (Tb), it is not known if TRPM8 plays a role in Tb regulation. Since TRPM8 has been considered as a potential target for chronic pain therapeutics, we have investigated the role of TRPM8 in Tb regulation.ResultsWe characterized five chemically distinct compounds (AMG0635, AMG2850, AMG8788, AMG9678, and Compound 496) as potent and selective antagonists of TRPM8 and tested their effects on Tb in rats and mice implanted with radiotelemetry probes. All five antagonists used in the study caused a transient decrease in Tb (maximum decrease of 0.98°C). Since thermoregulation is a homeostatic process that maintains Tb about 37°C, we further evaluated whether repeated administration of an antagonist attenuated the decrease in Tb. Indeed, repeated daily administration of AMG9678 for four consecutive days showed a reduction in the magnitude of the Tb decrease Day 2 onwards.ConclusionsThe data reported here demonstrate that TRPM8 channels play a role in Tb regulation. Further, a reduction of magnitude in Tb decrease after repeated dosing of an antagonist suggests that TRPM8’s role in Tb maintenance may not pose an issue for developing TRPM8 antagonists as therapeutics.


Pain | 2010

Pharmacological effects of nonselective and subtype-selective nicotinic acetylcholine receptor agonists in animal models of persistent pain.

BaoXi Gao; Markus Hierl; Kristie Clarkin; Todd Juan; Hung Nguyen; Marissa van der Valk; Hong Deng; Wenhong Guo; Sonya G. Lehto; David J. Matson; Jeff S. McDermott; Johannes Knop; Kevin Gaida; Lei Cao; Dan Waldon; Brian K. Albrecht; Alessandro Boezio; Katrina W. Copeland; Jean-Christophe Harmange; Stephanie K. Springer; Annika B. Malmberg

&NA; Nicotinic acetylcholine receptors (nAChRs) are longstanding targets for a next generation of pain therapeutics, but the nAChR subtypes that govern analgesia remain unknown. We tested a series of nicotinic agonists, including many molecules used or tried clinically, on a panel of cloned neuronal nAChRs for potency and selectivity using patch‐clamp electrophysiology and a live cell‐based fluorescence assay. Nonselective nicotinic agonists as well as compounds selective either for &agr;4&bgr;2 or for &agr;7 nAChRs were then tested in the formalin and complete Freunds adjuvant models of pain. Nonselective nAChR agonists ABT‐594 and varenicline were effective analgesics. By contrast, the selective &agr;4&bgr;2 agonist ispronicline and a novel &agr;4&bgr;2‐selective potentiator did not appear to produce analgesia in either model. &agr;7‐selective agonists reduced the pain‐related endpoint, but the effect could be ascribed to nonspecific reduction of movement rather than to analgesia. Neither selective nor nonselective &agr;7 nicotinic agonists affected the release of pro‐inflammatory cytokines in response to antigen challenge. Electrophysiological recordings from spinal cord slice showed a strong nicotine‐induced increase in inhibitory synaptic transmission that was mediated partially by &agr;4&bgr;2 and only minimally by &agr;7 subtypes. Taken with previous studies, the results suggest that agonism of &agr;4&bgr;2 nAChRs is necessary but not sufficient to produce analgesia, and that the spinal cord is a key site where the molecular action of nAChRs produces analgesia.


Journal of Pharmacology and Experimental Therapeutics | 2015

Pharmacologic Characterization of AMG 334, a Potent and Selective Human Monoclonal Antibody against the Calcitonin Gene-Related Peptide Receptor

Licheng Shi; Sonya G. Lehto; Dawn Zhu; Hong Sun; Jianhua Zhang; Brian Smith; David Immke; Kenneth D. Wild; Cen Xu

Therapeutic agents that block the calcitonin gene–related peptide (CGRP) signaling pathway are a highly anticipated and promising new drug class for migraine therapy, especially after reports that small-molecule CGRP-receptor antagonists are efficacious for both acute migraine treatment and migraine prevention. Using XenoMouse technology, we successfully generated AMG 334, a fully human monoclonal antibody against the CGRP receptor. Here we show that AMG 334 competes with [125I]-CGRP binding to the human CGRP receptor, with a Ki of 0.02 nM. AMG 334 fully inhibited CGRP-stimulated cAMP production with an IC50 of 2.3 nM in cell-based functional assays (human CGRP receptor) and was 5000-fold more selective for the CGRP receptor than other human calcitonin family receptors, including adrenomedullin, calcitonin, and amylin receptors. The potency of AMG 334 at the cynomolgus monkey (cyno) CGRP receptor was similar to that at the human receptor, with an IC50 of 5.7 nM, but its potency at dog, rabbit, and rat receptors was significantly reduced (>5000-fold). Therefore, in vivo target coverage of AMG 334 was assessed in cynos using the capsaicin-induced increase in dermal blood flow model. AMG 334 dose-dependently prevented capsaicin-induced increases in dermal blood flow on days 2 and 4 postdosing. These results indicate AMG 334 is a potent, selective, full antagonist of the CGRP receptor and show in vivo dose-dependent target coverage in cynos. AMG 334 is currently in clinical development for the prevention of migraine.


The Journal of Neuroscience | 2014

Transient Receptor Potential Channel Ankyrin-1 Is Not a Cold Sensor for Autonomic Thermoregulation in Rodents

Cristiane de Oliveira; András Garami; Sonya G. Lehto; Eszter Pakai; Valéria Tékus; Krisztina Pohóczky; Beth D. Youngblood; Weiya Wang; Michael E. Kort; Philip R. Kym; Erika Pintér; Narender R. Gavva; Andrej A. Romanovsky

The rodent transient receptor potential ankyrin-1 (TRPA1) channel has been hypothesized to serve as a temperature sensor for thermoregulation in the cold. We tested this hypothesis by using deletion of the Trpa1 gene in mice and pharmacological blockade of the TRPA1 channel in rats. In both Trpa1−/− and Trpa1+/+ mice, severe cold exposure (8°C) resulted in decreases of skin and deep body temperatures to ∼8°C and 13°C, respectively, both temperatures being below the reported 17°C threshold temperature for TRPA1 activation. Under these conditions, Trpa1−/− mice had the same dynamics of body temperature as Trpa1+/+ mice and showed no weakness in the tail skin vasoconstriction response or thermogenic response to cold. In rats, the effects of pharmacological blockade were studied by using two chemically unrelated TRPA1 antagonists: the highly potent and selective compound A967079, which had been characterized earlier, and the relatively new compound 43 ((4R)-1,2,3,4-tetrahydro-4-[3-(3-methoxypropoxy)phenyl]-2-thioxo-5H-indeno[1,2-d]pyrimidin-5-one), which we further characterized in the present study and found to be highly potent (IC50 against cold of ∼8 nm) and selective. Intragastric administration of either antagonist at 30 mg/kg before severe (3°C) cold exposure did not affect the thermoregulatory responses (deep body and tail skin temperatures) of rats, even though plasma concentrations of both antagonists well exceeded their IC50 value at the end of the experiment. In the same experimental setup, blocking the melastatin-8 (TRPM8) channel with AMG2850 (30 mg/kg) attenuated cold-defense mechanisms and led to hypothermia. We conclude that TRPA1 channels do not drive autonomic thermoregulatory responses to cold in rodents.


Journal of Medicinal Chemistry | 2012

Fused piperidines as a novel class of potent and orally available transient receptor potential melastatin type 8 (TRPM8) antagonists.

Nuria A. Tamayo; Yunxin Bo; Vijay Keshav Gore; Vu Van Ma; Nobuko Nishimura; Phi Tang; Hong Deng; Lana Klionsky; Sonya G. Lehto; Weiya Wang; Brad Youngblood; Jiyun Chen; Tiffany L. Correll; Michael D. Bartberger; Narender R. Gavva; Mark H. Norman

The transient receptor potential melastatin type 8 (TRPM8) is a nonselective cation channel primarily expressed in a subpopulation of sensory neurons that can be activated by a wide range of stimuli, including menthol, icilin, and cold temperatures (<25 °C). Antagonism of TRPM8 is currently under investigation as a new approach for the treatment of pain. As a result of our screening efforts, we identified tetrahydrothienopyridine 4 as an inhibitor of icilin-induced calcium influx in CHO cells expressing recombinant rat TRPM8. Exploration of the structure-activity relationships of 4 led to the identification of a potent and orally bioavailable TRPM8 antagonist, tetrahydroisoquinoline 87. Compound 87 demonstrated target coverage in vivo after oral administration in a rat pharmacodynamic model measuring the prevention of icilin-induced wet-dog shakes (WDS).


Nature Structural & Molecular Biology | 2017

Crystal structures of human glycine receptor [alpha]3 bound to a novel class of analgesic potentiators

Xin Huang; Paul L. Shaffer; Shawn Ayube; Howard Bregman; Hao Chen; Sonya G. Lehto; Jason Luther; David J. Matson; Klaus Michelsen; Matthew Plant; Stephen H. Schneider; Jeffrey R. Simard; Yohannes Teffera; Shuyan Yi; Maosheng Zhang; Erin F. DiMauro; Jacinthe Gingras

Current therapies to treat persistent pain and neuropathic pain are limited by poor efficacy, side effects and risk of addiction. Here, we present a novel class of potent selective, central nervous system (CNS)-penetrant potentiators of glycine receptors (GlyRs), ligand-gated ion channels expressed in the CNS. AM-1488 increased the response to exogenous glycine in mouse spinal cord and significantly reversed mechanical allodynia induced by nerve injury in a mouse model of neuropathic pain. We obtained an X-ray crystal structure of human homopentameric GlyRα3 in complex with AM-3607, a potentiator of the same class with increased potency, and the agonist glycine, at 2.6-Å resolution. AM-3607 binds a novel allosteric site between subunits, which is adjacent to the orthosteric site where glycine binds. Our results provide new insights into the potentiation of cysteine-loop receptors by positive allosteric modulators and hold promise in structure-based design of GlyR modulators for the treatment of neuropathic pain.


Journal of Medicinal Chemistry | 2014

Optimization of potency and pharmacokinetic properties of tetrahydroisoquinoline transient receptor potential melastatin 8 (TRPM8) antagonists.

Daniel B. Horne; Nuria A. Tamayo; Michael D. Bartberger; Yunxin Bo; Jeffrey Clarine; Carl D. Davis; Vijay Keshav Gore; Matthew R. Kaller; Sonya G. Lehto; Vu Van Ma; Nobuko Nishimura; Thomas Nguyen; Phi Tang; Weiya Wang; Beth D. Youngblood; Maosheng Zhang; Narender R. Gavva; Holger Monenschein; Mark H. Norman

Transient receptor potential melastatin 8 (TRPM8) is a nonselective cation channel expressed in a subpopulation of sensory neurons in the peripheral nervous system. TRPM8 is the predominant mammalian cold temperature thermosensor and is activated by cold temperatures ranging from 8 to 25 °C and cooling compounds such as menthol or icilin. TRPM8 antagonists are being pursued as potential therapeutics for treatment of pain and bladder disorders. This manuscript outlines new developments in the SAR of a lead series of 1,2,3,4-tetrahydroisoquinoline derivatives with emphasis on strategies to improve pharmacokinetic properties and potency. Selected compounds were profiled in two TRPM8 target-specific in vivo coverage models in rats (the icilin-induced wet dog shake model and the cold pressor test). Compound 45 demonstrated robust efficacy in both pharmacodynamic models with ED90 values <3 mg/kg.

Collaboration


Dive into the Sonya G. Lehto's collaboration.

Researchain Logo
Decentralizing Knowledge