Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sookkasem Khositseth is active.

Publication


Featured researches published by Sookkasem Khositseth.


Kidney International | 2010

Tamm-Horsfall protein and urinary exosome isolation

Patricia Fernández-Llama; Sookkasem Khositseth; Patricia A. Gonzales; Robert A. Star; Trairak Pisitkun; Mark A. Knepper

Urinary exosomes have been proposed as starting material for discovery of protein biomarkers of kidney disease. Current protocols for their isolation use a two-step differential centrifugation process. Due to their low density, exosomes are expected to remain in the low-speed (17,000 x g) supernatant and to sediment only when the sample is spun at high speed (200,000 x g). Analysis using western blot and electron microscopy found that urinary exosomes are also present in the low-speed pellet entrapped by polymeric Tamm-Horsfall protein, thus diminishing the procedures reproducibility. Here we show that addition of dithiothreitol to the low-speed pellet disrupted the polymeric network, presumably by reduction of disulfide bonds linking the monomers. This modification shifted the exosomal proteins from the low- to the high-speed pellet. Also, by shifting the Tamm-Horsfall protein to the high-speed pellet, the use of dithiothreitol makes it feasible to use Tamm-Horsfall protein to normalize excretion rates of exosomal proteins in spot urines. We tested this by western blot, and found that there was a high degree of correlation between exosomal proteins and Tamm-Horsfall protein in the high-speed pellet. Since the yield of exosomes by differential centrifugation can be increased by chemical reduction, Tamm-Horsfall protein may be a suitable normalizing variable for urinary exosome studies when quantitative urine collections are not practical.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Systems-level analysis of cell-specific AQP2 gene expression in renal collecting duct

Ming-Jiun Yu; R. Lance Miller; Panapat Uawithya; Markus M. Rinschen; Sookkasem Khositseth; Drew W. W. Braucht; Chung-Lin Chou; Trairak Pisitkun; Raoul D. Nelson; Mark A. Knepper

We used a systems biology-based approach to investigate the basis of cell-specific expression of the water channel aquaporin-2 (AQP2) in the renal collecting duct. Computational analysis of the 5′-flanking region of the AQP2 gene (Genomatix) revealed 2 conserved clusters of putative transcriptional regulator (TR) binding elements (BEs) centered at −513 bp (corresponding to the SF1, NFAT, and FKHD TR families) and −224 bp (corresponding to the AP2, SRF, CREB, GATA, and HOX TR families). Three other conserved motifs corresponded to the ETS, EBOX, and RXR TR families. To identify TRs that potentially bind to these BEs, we carried out mRNA profiling (Affymetrix) in mouse mpkCCDc14 collecting duct cells, revealing expression of 25 TRs that are also expressed in native inner medullary collecting duct. One showed a significant positive correlation with AQP2 mRNA abundance among mpkCCD subclones (Ets1), and 2 showed a significant negative correlation (Elf1 and an orphan nuclear receptor Nr1h2). Transcriptomic profiling in native proximal tubules (PT), medullary thick ascending limbs (MTAL), and IMCDs from kidney identified 14 TRs (including Ets1 and HoxD3) expressed in the IMCD but not PT or MTAL (candidate AQP2 enhancer roles), and 5 TRs (including HoxA5, HoxA9 and HoxA10) expressed in PT and MTAL but not in IMCD (candidate AQP2 repressor roles). In luciferase reporter assays, overexpression of 3 ETS family TRs transactivated the mouse proximal AQP2 promoter. The results implicate ETS family TRs in cell-specific expression of AQP2 and point to HOX, RXR, CREB and GATA family TRs as playing likely additional roles.


Molecular & Cellular Proteomics | 2011

Quantitative Protein and mRNA Profiling Shows Selective Post-Transcriptional Control of Protein Expression by Vasopressin in Kidney Cells

Sookkasem Khositseth; Trairak Pisitkun; Dane H. Slentz; Guanghui Wang; Jason D. Hoffert; Mark A. Knepper; Ming-Jiun Yu

Previous studies in yeast have supported the view that post-transcriptional regulation of protein abundances may be more important than previously believed. Here we ask the question: “In a physiological regulatory process (the response of mammalian kidney cells to the hormone vasopressin), what fraction of the expressed proteome undergoes a change in abundance and what fraction of the regulated proteins have corresponding changes in mRNA levels?” In humans and other mammals, vasopressin fulfills a vital homeostatic role (viz. regulation of renal water excretion) by regulating the water channel aquaporin-2 in collecting duct cells. To address the question posed, we utilized large-scale quantitative protein mass spectrometry (LC-MS/MS) employing stable isotopic labeling in cultured mpkCCD cells (‘SILAC’) coupled with transcriptomic profiling using oligonucleotide expression arrays (Affymetrix). Preliminary studies analyzing two nominally identical control samples by SILAC LC-MS/MS yielded a relative S.D. of 13% (for ratios), establishing the precision of the SILAC approach in our hands. We quantified nearly 3000 proteins with nontargeted SILAC LC-MS/MS, comparing vasopressin- versus vehicle-treated samples. Of these proteins 786 of them were quantified in each of 3 experiments, allowing statistical analysis and 188 of these showed significant vasopressin-induced changes in abundance, including aquaporin-2 (20-fold increase). Among the proteins with statistically significant abundance changes, a large fraction (at least one-third) was found to lack changes in the corresponding mRNA species (despite sufficient statistical power), indicating that post-transcriptional regulation of protein abundance plays an important role in the vasopressin response. Bioinformatic analysis of the regulated proteins (versus all transcripts) shows enrichment of glutathione S-transferase isoforms as well as proteins involved in organization of the actin cytoskeleton. The latter suggests that long-term regulatory processes may contribute to actomyosin-dependent trafficking of the water channel aquaporin-2. The results provide impetus for increased focus on translational regulation and regulation of protein degradation in physiological control in mammalian epithelial cells.


American Journal of Hematology | 2008

Hematological abnormalities in patients with distal renal tubular acidosis and hemoglobinopathies

Sookkasem Khositseth; Apiwan Sirikanaerat; Siri Khoprasert; Sauwalak Opastirakul; Pornchai Kingwatanakul; Wanna Thongnoppakhun; Pa-thai Yenchitsomanus

Mutations of the human SLC4A1 gene encoding erythroid and kidney isoforms of anion exchanger 1 (AE1, band 3) result in erythrocyte abnormalities or distal renal tubular acidosis (dRTA) and such mutations are observed in Southeast Asia, where hemoglobinopathies are prevalent. Genetic and hematological studies in 18 Thai patients with dRTA have shown that 12 of them (67%) carried SLC4A1 mutations (7 G701D/G701D, 3 SAO/G701D, and 2 G701D/A858D). Of these 12 patients, three had homozygous G701D/G701D and heterozygous Hb E; one compound heterozygous SAO/G701D and heterozygous α+‐thalassemia; and one compound heterozygous G701D/A858D and heterozygous Hb E. Of 6 patients without SLC4A1 mutation, two each carried heterozygous or homozygous Hb E and one of the latter also had Hb H disease (‐‐SEA/‐α4.2). The blood smears of patients with homozygous G701D/G701D showed ∼25% ovalocytes. Strikingly, the patients with coexistence of homozygous G701D/G701D and heterozygous Hb E had 58% ovalocytes. Similarly, the patients who had compound heterozygous SAO/G701D showed 49% ovalocytes, but the patient with coexistence of compound heterozygous SAO/G701D and heterozygous α+‐thalassemia had 70% ovalocytes. Our previous study has shown that under metabolic acidosis, the patients with homozygous G701D/G701D or compound heterozygous SAO/G701D had reticulocytosis, indicating compensated hemolysis. A patient with compound heterozygous SAO/G701D and heterozygous α+‐thalassemia presented with hemolytic anemia and hepatosplenomegaly which was alleviated by alkaline therapy. Taken together, the coexistence of both homozygous or compound heterozygous SLC4A1 mutations and hemoglobinopathy has a combined effect on red cell morphology and degree of hemolytic anemia, which is aggravated by acidosis. Am. J. Hematol., 2008.


QJM: An International Journal of Medicine | 2012

Tropical distal renal tubular acidosis: clinical and epidemiological studies in 78 patients

Sookkasem Khositseth; L.J. Bruce; Stephen B. Walsh; W.M. Bawazir; G.D. Ogle; Robert J. Unwin; Meow-Keong Thong; R. Sinha; K.E. Choo; W. Chartapisak; Pornchai Kingwatanakul; Achra Sumboonnanonda; Somkiat Vasuvattakul; Pa-thai Yenchitsomanus; O. Wrong

BACKGROUND Distal renal tubular acidosis (dRTA) caused by mutations of the SLC4A1 gene encoding the erythroid and kidney isoforms of anion exchanger 1 (AE1 or band 3) has a high prevalence in some tropical countries, particularly Thailand, Malaysia, the Philippines and Papua New Guinea (PNG). Here the disease is almost invariably recessive and can result from either homozygous or compound heterozygous SLC4A1 mutations. METHODS We have collected and reviewed our own and published data on tropical dRTA to provide a comprehensive series of clinical and epidemiological studies in 78 patients. RESULTS Eight responsible SLC4A1 mutations have been described so far, four of them affecting multiple unrelated families. With the exception of the mutation causing South-East Asian ovalocytosis (SAO), none of these mutations has been reported outside the tropics, where dRTA caused by SLC4A1 mutations is much rarer and almost always dominant, resulting from mutations that are quite different from those found in the tropics. SLC4A1 mutations, including those causing dRTA, may cause morphological red cell changes, often with excess haemolysis. In dRTA, these red cell changes are usually clinically recessive and not present in heterozygotes. The high tropical prevalence of dRTA caused by SLC4A1 mutations is currently unexplained. CONCLUSION A hypothesis suggesting that changes in red cell metabolism caused by these mutations might protect against malaria is put forward to explain the phenomenon, and a possible mechanism for this effect is proposed.


Pediatric Nephrology | 2007

IgA nephropathy associated with Hodgkin’s disease in children: a case report, literature review and urinary proteome analysis

Sookkasem Khositseth; Nonglak Kanitsap; Naree Warnnissorn; Visith Thongboonkerd

We report herein a rare case of IgAN associated with Hodgkin’s disease in a 14-year-old boy. Clinical manifestations and laboratory parameters were improved after treatment with CHOP chemotherapy and enalapril. Urinary proteins were isolated and examined using state-of-the-art proteomic technology, before and during the treatment course. Two-dimensional gel electrophoresis showed obvious alterations in the urinary proteome profile in response to such therapy. Quantitative intensity analysis and gel mapping revealed 14 altered proteins with reduced excretion levels during the treatment course, including albumin, albumin complexed with decanoic acid, α-1 antitrypsin, cadherin-11 precursor, collagen α 1 (VI) chain precursor, complement C1q tumor necrosis factor-related protein, Ig heavy chain, Ig light chain, kininogen, inter-α-trypsin inhibitor (α-1 microglobulin), inter-α-trypsin inhibitor heavy chain, leucine-rich α-2 glycoprotein, β-2 microglobulin, and transferrin precursor. Their potential roles in the pathogenesis and pathophysiology of IgAN are discussed.


Molecular Membrane Biology | 2010

Impaired trafficking and intracellular retention of mutant kidney anion exchanger 1 proteins (G701D and A858D) associated with distal renal tubular acidosis

Duangporn Ungsupravate; Nunghathai Sawasdee; Sookkasem Khositseth; Wandee Udomchaiprasertkul; Siri Khoprasert; Jing Li; Reinhart A. F. Reithmeier; Pa-thai Yenchitsomanus

Abstract Novel compound heterozygous mutations, G701D, a recessive mutation, and A858D, a mild dominant mutation, of human solute carrier family 4, anion exchanger, member 1 (SLC4A1) were identified in two pediatric patients with distal renal tubular acidosis (dRTA). To examine the interaction, trafficking, and cellular localization of the wild-type and two mutant kidney AE1 (kAE1) proteins, we expressed the proteins alone or together in human embryonic kidney (HEK) 293T and Madin-Darby canine kidney (MDCK) epithelial cells. In individual expressions, wild-type kAE1 was localized at the cell surface of HEK 293T and the basolateral membrane of MDCK cells. In contrast, kAE1 G701D was mainly retained intracellularly, while kAE1 A858D was observed intracellularly and at the cell surface. In co-expression experiments, wild-type kAE1 formed heterodimers with kAE1 G701D and kAE1 A858D, and promoted the cell surface expression of the mutant proteins. The co-expressed kAE1 G701D and A858D could also form heterodimers but showed predominant intracellular retention in HEK 293T and MDCK cells. Thus impaired trafficking of the kAE1 G701D and A858D mutants would lead to a profound decrease in functional kAE1 at the basolateral membrane of α-intercalated cells in the distal nephron of the patients with dRTA.


Scientific Reports | 2016

Autophagic degradation of aquaporin-2 is an early event in hypokalemia-induced nephrogenic diabetes insipidus

Sookkasem Khositseth; Panapat Uawithya; Poorichaya Somparn; Komgrid Charngkaew; Nattakan Thippamom; Jason D. Hoffert; Fahad Saeed; D. Michael Payne; Shu-Hui Chen; Robert A. Fenton; Trairak Pisitkun

Hypokalemia (low serum potassium level) is a common electrolyte imbalance that can cause a defect in urinary concentrating ability, i.e., nephrogenic diabetes insipidus (NDI), but the molecular mechanism is unknown. We employed proteomic analysis of inner medullary collecting ducts (IMCD) from rats fed with a potassium-free diet for 1 day. IMCD protein quantification was performed by mass spectrometry using a label-free methodology. A total of 131 proteins, including the water channel AQP2, exhibited significant changes in abundance, most of which were decreased. Bioinformatic analysis revealed that many of the down-regulated proteins were associated with the biological processes of generation of precursor metabolites and energy, actin cytoskeleton organization, and cell-cell adhesion. Targeted LC-MS/MS and immunoblotting studies further confirmed the down regulation of 18 selected proteins. Electron microscopy showed autophagosomes/autophagolysosomes in the IMCD cells of rats deprived of potassium for only 1 day. An increased number of autophagosomes was also confirmed by immunofluorescence, demonstrating co-localization of LC3 and Lamp1 with AQP2 and several other down-regulated proteins in IMCD cells. AQP2 was also detected in autophagosomes in IMCD cells of potassium-deprived rats by immunogold electron microscopy. Thus, enhanced autophagic degradation of proteins, most notably including AQP2, is an early event in hypokalemia-induced NDI.


bioRxiv | 2018

RNA-Seq and Protein Mass Spectrometry in Microdissected Kidney Tubules Reveal Signaling Processes that Initiate Lithium-Induced Diabetes Insipidus

Chih-Chien Sung; Lihe Chen; Kavee Limbutara; Hyun Jun Jung; Gabrielle G. Gilmer; Chin-Rang Yang; Sookkasem Khositseth; Shih-Hua Lin; Chung Lin Chou; Mark A. Knepper

Lithium salts, used for treatment of bipolar disorder, frequently induce nephrogenic diabetes insipidus (NDI), limiting therapeutic success. NDI is associated with loss of expression of the molecular water channel, aquaporin-2, in the renal collecting duct (CD). Here, we use the methods of systems biology in a well-established rat model of lithium-induced NDI to identify signaling pathways activated at the onset of polyuria. Using single-tubule RNA-Seq, full transcriptomes were determined in microdissected cortical CDs of rats 72 hrs after initiation of lithium chloride (LiCl) administration (vs. time-controls without LiCl). Transcriptome-wide changes in mRNA abundances were mapped to gene sets associated with curated canonical signaling pathways, showing evidence for activation of NF-κB signaling with induction of genes coding for multiple chemokines as well as most components of the Major Histocompatibility Complex (MHC) Class I antigen-presenting complex. Administration of antiinflammatory doses of dexamethasone to LiCl-treated rats countered the loss of aquaporin-2 protein. RNA-Seq also confirmed prior evidence of a shift from quiescence into the cell cycle with arrest. Time course studies demonstrated an early (12 hrs) increase in multiple immediate early genes including several transcription factors. Protein mass spectrometry in microdissected cortical CDs provided corroborative evidence but also identified decreased abundance of several anti-oxidant proteins. Integration of new data with prior data about lithium effects at a molecular level leads to a signaling model in which lithium increases ERK activation leading to induction of NF-κB signaling and an inflammatory-like response that represses Aqp2 gene transcription.


Labmedicine | 2018

Molecular Diagnosis of Solute Carrier Family 4 Member 1 (SLC4A1) Mutation–Related Autosomal Recessive Distal Renal Tubular Acidosis

Nipaporn Deejai; Suwannee Wisanuyotin; Choochai Nettuwakul; Sookkasem Khositseth; Nunghathai Sawasdee; Kiattichai Saetai; Pa-thai Yenchitsomanus; Nanyawan Rungroj

Background Two common mutations of the solute carrier family 4 member 1 (SLC4A1) gene, namely, Southeast Asian ovalocytosis (SAO) and band 3 Bangkok 1 (G701D), cause autosomal recessive distal renal tubular acidosis (AR dRTA) in ethnic Southeast Asian populations. In this study, we applied the high-resolution melting (HRM) method for screening of AR dRTA associated with SLC4A1 mutations in 10 new patients with unknown cause(s) of AR dRTA. Methods We analyzed SAO and G701D mutations in the patients and their family members using HRM. The results were confirmed by polymerase chain reaction-restriction fragment-length polymorphism (PCR-RFLP) and DNA sequencing techniques. Results All patients carried homozygous G701D mutation, whereas their family members had heterozygous G701D or homozygous wild-type. Conclusions Homozygous G701D is a common cause of AR dRTA in ethnic Thai pediatric populations. HRM can be used as a rapid screening method for common SLC4A1 mutations that cause AR dRTA in Southeast Asian and other populations.

Collaboration


Dive into the Sookkasem Khositseth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark A. Knepper

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Shu-Hui Chen

National Cheng Kung University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge