Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Soon-Il Hong.
Journal of the Korean wood science and technology | 2011
Keon-Ho Kim; Soon-Il Hong
To evaluate the bonding performance of reinforced glulam, the textile type of glass fiber and aramid fiber, and the sheet type of glass fiber reinforced plastic (GFRP) and carbon fiber reinforced plastic (CFRP) were used as reinforcements. The reinforced glulam was manufactured by inserting reinforcement between the outmost and middle lamination of 5ply glulam. The types of adhesives used in this study were polyvinyl acetate resins (MPU500H, and MPU600H), polyurethane resin and resorcinol resin. The block shear strengths of the textile type in glass fiber reinforced glulam using MPU500H and resorcinol resin were higher than 7.1 N/, and these glulams passed the wood failure requirement of Korean standards (KS). In case of the sheet types, GFRP reinforced glulams using MPU500H, polyurethane resin and resorcinol resin, and CFRP reinforced glulams using MPU500H and polyurethane resin passed the requirement of KS. The textile type of glass fiber reinforced glulam using resorcinol resin after water and boiling water soaking passed the delamination requirement of KS. The only GFRP reinforced glulam using MPU500H after water soaking passed the delamination requirement of KS. We conclude that the bonding properties of adhesive according to reinforcements are one of the prime factors to determine the bonding performance of the reinforced glulam.
Journal of the Korean wood science and technology | 2016
Keon-Ho Kim; Soon-Il Hong
The yield shear strength of bolt connection in glass fiber reinforced glulam was predicted using a design-based equation, and was compared to the empirical yield shear strength. For the predicted equation, the mechanical properties of member (the elastic modulus, Poisson`s ratio, shear modulus) was tested. The fracture toughness factor () of glass fiber reinforced glulam was reflected to the revision of the design equation of bolted connection. The compressive strength properties to grain direction was influenced by annual ring angle and width of lamina. Compared with the revised yield shear strength of reinforced glulam, it was tended to be similar to the empirical yield shear strength on the diameter of bolt and the reinforcements. The revised yield shear strength from proposed formula of KBC was most appropriately matched in the bolt connection of the glass fiber reinforced glulam.
Journal of the Korean wood science and technology | 2015
In-Hwan Lee; Yo-Jin Song; Hong-Ju Jung; Soon-Il Hong
국내산 낙엽송 집성재와 봉형 GFRP의 접착성능을 평가하기 위해 집성재에 선공을 한 후 봉형 GFRP를 삽입하고 접착제로 목재와의 간극을 충진시켜 인발시험편을 제작하였다. 인발시험편은 접착 깊이, 접착층 두께, 접착제 종류를 다르게 적용하여 실험하였다. 봉형 GFRP를 삽입접착한 캔틸레버형 라멘구조 시험체는 인발시험 결과를 토대로 제작, 강판삽입형 시험체와 모멘트 저항 성능을 비교검토 하였다. 인발시험결과 봉형 GFRP의 삽입깊이가 봉형 GFRP 직경의 5배일 때 가장 우수한 접착력이 측정되었으며, 접착층 두께는 1 mm일 경우 2 mm일 때보다 17%∼29% 향상된 접착력이 측정되었다. 또한 폴리우레탄(poly-urethane) 접착제를 사용한 시험편이 레조시놀(resorcinol) 접착제를 사용한 시험편보다 2.9∼4.0배 높은 성능을 발휘하였다. 봉형 GRFP로 접합한 캔틸레버형 라멘구조 시험체는 드리프트 핀을 사용한 강판삽입형 시험체와 비교하여 평균0.82배 낮은 모멘트 저항 성능이 측정되었지만 초기강성은 0.93배로 대등한 성능을 보였다.
Journal of the Korean wood science and technology | 2015
Keon-Ho Kim; Soon-Il Hong
To evaluate the shear performance of the textile glass fiber and the sheet glass fiber reinforced glulam bolted connections, a tension type shear test was conducted. The average yield shear strength of the bolted connection of reinforced glulam was increased by 12% ~ 31% compared to the non-reinforced glulam. It was confirmed that the shear performance of 5D end distance of the glass fiber reinforced glulam connection corresponds to that of 7D of the non-reinforced glulam connection proposed in building design requirements in various countries. Compared to the non-reinforced glulam, the average shear strength of textile glass fiber reinforced glulam was markedly increased. The non-reinforced glulam and the GFRP reinforced glulam underwent a momentary splitting fracture. However, the failure mode of textile glass fiber reinforced glulam showed a good ductility.
Journal of the Korean wood science and technology | 2014
Yo-Jin Song; Hong-Ju Jung; Dae-Gil Kim; Sang-Il Kim; Soon-Il Hong
By replacing the previous metal connector on the joints of timber structure, the GFRP reinforced laminated wooden pin was produced using a wooden material and Glass fiber reinforced plastic(GFRP) composite laminate. In addition, using the reinforced wooden pin, the tensile type shear strength test was conducted. Based on the result of the bending strength test of the reinforced laminated wooden pin according to the GFRP arrangement, a specimen(Type-A) with a single insertion of GFRP for each layer have shown the most favorable performance. Also, it was verified that densi- fied specimen hot pressed for an hour at the temperature of 150°C and with the oppression pressure 1.96 N/mm 2 have shown the improved performance of 1.57 times than the specimen without the densification.
Journal of the Korean wood science and technology | 2013
Keon-Ho Kim; Yo-Jin Song; Soon-Il Hong
In order to know the shear performances of a bolted connection in reinforced glulam depending upon the combination of textile glass fiber, a tensile-type shear test was conducted. Textile glass fiber was used as a reinforcement, whose glass fiber arrangement was a plain weaving type or a diagonal cloth type. Reinforced glulam was made up of 5 plies and it was produced by inserting and laminating the plies between laminas depending upon a changed insert position and combination form of textile glass fiber. Tensile-type shear test specimens were a steel plate insert-type and joined at end-distance 7D with bolts whose diameter 12 or 16 mm.
Journal of the Korean wood science and technology | 2015
Keon-Ho Kim; Soon-Il Hong
To study the bearing characteristics of glass fiber reinforced glulam for structural design, bearing strength tests were performed. Bearing loads were applied in the direction parallel to the grains, and the holes were prepared in such a way that the bolts would bear and support all the layers. The yield bearing strengths of the glass fiber reinforced glulam were found to be similar to those of the non-reinforced glulam, and were almost constant regardless of increases in bolt diameter. The ratio of the experimental yield bearing strength to the estimated bearing strength according to the suggested equation of the Korea Building Code and National Design Specification was 0.91~1.03. For the non-reinforced glulam and the sheet glass fiber reinforced plastic glulam, the maximum bearing load was measured according to the splitting fracture of specimens under bolt. The textile glass fiber reinforced glulam underwent only an embedding failure caused by the bearing load. The failure mode of reinforced glulam according to bearing load will influence the failure behavior of bolted connection, and estimating the shear yield strength of the bolted connection of the reinforced glulam is necessary, not only by using the bearing strength characteristics but also using the fracture toughness of the reinforced glulam.
Journal of the Korean wood science and technology | 2014
Yo-Jin Song; Hong-Ju Jung; Jung-Jae Lee; Jin-Suk Suh; Sang-Bum Park; Soon-Il Hong
After being laminated with a combination of glass fiber reinforced plastic and plywood, the GFRP laminated plate was densificated for 1 hour at with pressure of . A partial reinforced beam was produced by attaching the 5 GFRP laminated plates to the joint of glulam and the column. In addition, the column to beam joint was produced by using reinforced laminated wooden pin which was made of GFRP sheet and plywood, fiber glass reinforced cylindrical-LVL column. The joint was made of round log, glulam and drift pin as the reference specimen, and its moment resistance was evaluated. As a result, the strength performance of specimens with partial reinforced beams were 1.8 times stronger than the reference specimen on average. Furthermore, rupture was neither occurred on partial reinforced beam nor column. Toughness and stiffness of joints were also fine. The GFRP sheet reinforced laminated plate showed better reinforcement effect than GFRP textile reinforced one. GFRP sheet was inserted into each layer of laminate, and it showed good condition in rotation-angle and strength, therefore it is the most appropriate to reinforce the part of the beam.
Journal of the Korean wood science and technology | 2014
Yo-Jin Song; Hong-Ju Jung; Hyun-Ho Park; Hak-Young Lee; Soon-Il Hong
ABSTRACT As a way of developing wooden joint development, a glass fiber reinforced wood plate was manufactured to replace a steel plate. Also, the fracture toughness was evaluated. Through application to a cantilever-type specimen made of a column and a beam, the moment resistance performance was evaluated. For the fracture toughness specimen of the wood plate, 12 types were manufactured by varying the combination of a main member (veneer and plywood) and reinforcement (glass fiber sheet and glass fiber cloth). The results of the fracture toughness test indicated that the 5% yield load of the specimen using plywood was 18% higher than that of the specimen using veneer, and that the specimen reinforced by inserting glass fiber sheets between testing materials (Type-3-PS) had the highest average 5% yield load 4841 N. Thus, a moment resistance strength test was performed by applying Type-3-PS to a column-beam joint. The results of the test indicated that compared to the specimen using a steel plate and a drift pin (Type-A), the maximum moment ratio of the specimen using a glass fiber reinforced wood plate (Type-3-PS) and a drift pin (Type-B) was 0.79; and that a rupture occurred in the wood plate due to high stiffness of the drift pin. The maximum moment ratio of the specimen using a glass fiber reinforced wood plate (Type-3-PS) and a glass fiber reinforced wooden laminated pin (Type-C) was 0.67, which showed low performance. However, unlike Type-A, a ductile fracture occurred on Type-C, and the load gradually decreased even after the max-imum moment.
Journal of the Korean wood science and technology | 2011
Jun-Chul Park; Keon-Ho Kim; Dong-Heub Lee; Dong-Won Son; Soon-Il Hong
The strength properties of wooden retaining wall which was made with pitch pine were evaluated. Wooden retaining wall was made with diameter 90 mm of pitch pine round posts treated with CUAZ-2 (Copper Azole). The length of the front stretcher of the retaining wall was 3,000 mm. The distance between the headers (the notched member) is 1,000 mm in center and is 900 mm in side. There were connections every 2,000 mm because actually the length of stretcher is limited in the retaining wall. The strength test was carried out according to connection type because the section between stretchers can act as a defect. A result of the strength test according to connection type confirms that connection does not act as defect because the strength of retaining wall in single stretcher is similar to that in the section between stretchers. The strength test of the wooden retaining wall was carried out in 5 types according to the condition of the base section. When the upper soil pressure was 9.8 kN/, the maximum load of the retaining wall fixing the front foundation shows higher values than those of others. But the total deformation is lower in the retaining wall not to fix a base section than in that to fix a base section. It is thought that the retaining wall not to fix a base section shows low value because the deformation is distributed throughout the retaining wall and it is confirmed that the soil pressure affects supporting the structure because the deformation of the retaining wall under low pressure is 3~4 fold higher than those of others. The failure mode of the retaining wall is the overturning type because the high section is deformed. Mostly, the failure mode is the separation of the header in the notched section.