Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sophia Tsoka is active.

Publication


Featured researches published by Sophia Tsoka.


Nucleic Acids Research | 2005

Expansion of the BioCyc collection of pathway/genome databases to 160 genomes

Peter D. Karp; Christos A. Ouzounis; Caroline Moore-Kochlacs; Leon Goldovsky; Pallavi Kaipa; Dag Ahrén; Sophia Tsoka; Nikos Darzentas; Victor Kunin; Nuria Lopez-Bigas

The BioCyc database collection is a set of 160 pathway/genome databases (PGDBs) for most eukaryotic and prokaryotic species whose genomes have been completely sequenced to date. Each PGDB in the BioCyc collection describes the genome and predicted metabolic network of a single organism, inferred from the MetaCyc database, which is a reference source on metabolic pathways from multiple organisms. In addition, each bacterial PGDB includes predicted operons for the corresponding species. The BioCyc collection provides a unique resource for computational systems biology, namely global and comparative analyses of genomes and metabolic networks, and a supplement to the BioCyc resource of curated PGDBs. The Omics viewer available through the BioCyc website allows scientists to visualize combinations of gene expression, proteomics and metabolomics data on the metabolic maps of these organisms. This paper discusses the computational methodology by which the BioCyc collection has been expanded, and presents an aggregate analysis of the collection that includes the range of number of pathways present in these organisms, and the most frequently observed pathways. We seek scientists to adopt and curate individual PGDBs within the BioCyc collection. Only by harnessing the expertise of many scientists we can hope to produce biological databases, which accurately reflect the depth and breadth of knowledge that the biomedical research community is producing.


Nature Genetics | 2012

Mapping cis- and trans-regulatory effects across multiple tissues in twins

Elin Grundberg; Kerrin S. Small; Åsa K. Hedman; Alexandra C. Nica; Alfonso Buil; Sarah Keildson; Jordana T. Bell; Yang T-P.; Eshwar Meduri; Amy Barrett; James Nisbett; Magdalena Sekowska; Alicja Wilk; Shin S-Y.; Daniel Glass; Mary E. Travers; Josine Min; S. M. Ring; Karen M Ho; Gudmar Thorleifsson; A. P. S. Kong; Unnur Thorsteindottir; Chrysanthi Ainali; Antigone S. Dimas; Neelam Hassanali; Catherine E. Ingle; David Knowles; Maria Krestyaninova; Christopher E. Lowe; P. Di Meglio

Sequence-based variation in gene expression is a key driver of disease risk. Common variants regulating expression in cis have been mapped in many expression quantitative trait locus (eQTL) studies, typically in single tissues from unrelated individuals. Here, we present a comprehensive analysis of gene expression across multiple tissues conducted in a large set of mono- and dizygotic twins that allows systematic dissection of genetic (cis and trans) and non-genetic effects on gene expression. Using identity-by-descent estimates, we show that at least 40% of the total heritable cis effect on expression cannot be accounted for by common cis variants, a finding that reveals the contribution of low-frequency and rare regulatory variants with respect to both transcriptional regulation and complex trait susceptibility. We show that a substantial proportion of gene expression heritability is trans to the structural gene, and we identify several replicating trans variants that act predominantly in a tissue-restricted manner and may regulate the transcription of many genes.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Genome evolution reveals biochemical networks and functional modules

Christian von Mering; Evgeny M. Zdobnov; Sophia Tsoka; Francesca D. Ciccarelli; José B. Pereira-Leal; Christos A. Ouzounis; Peer Bork

The analysis of completely sequenced genomes uncovers an astonishing variability between species in terms of gene content and order. During genome history, the genes are frequently rear-ranged, duplicated, lost, or transferred horizontally between genomes. These events appear to be stochastic, yet they are under selective constraints resulting from the functional interactions between genes. These genomic constraints form the basis for a variety of techniques that employ systematic genome comparisons to predict functional associations among genes. The most powerful techniques to date are based on conserved gene neighborhood, gene fusion events, and common phylogenetic distributions of gene families. Here we show that these techniques, if integrated quantitatively and applied to a sufficiently large number of genomes, have reached a resolution which allows the characterization of function at a higher level than that of the individual gene: global modularity becomes detectable in a functional protein network. In Escherichia coli, the predicted modules can be bench-marked by comparison to known metabolic pathways. We found as many as 74% of the known metabolic enzymes clustering together in modules, with an average pathway specificity of at least 84%. The modules extend beyond metabolism, and have led to hundreds of reliable functional predictions both at the protein and pathway level. The results indicate that modularity in protein networks is intrinsically encoded in present-day genomes.


Nature Genetics | 2000

Prediction of protein interactions: metabolic enzymes are frequently involved in gene fusion

Sophia Tsoka; Christos A. Ouzounis

Prediction of protein interactions: metabolic enzymes are frequently involved in gene fusion


Genome Biology | 2000

Genome sequences and great expectations

Ioannis Iliopoulos; Sophia Tsoka; Miguel A. Andrade; Paul Janssen; Benjamin Audit; Anna Tramontano; Alfonso Valencia; Christophe Leroy; Chris Sander; Christos A. Ouzounis

To assess how automatic function assignment will contribute to genome annotation in the next five years, we have performed an analysis of 31 available genome sequences. An emerging pattern is that function can be predicted for almost two-thirds of the 73,500 genes that were analyzed. Despite progress in computational biology, there will always be a great need for large-scale experimental determination of protein function.


FEBS Letters | 2000

Recent developments and future directions in computational genomics

Sophia Tsoka; Christos A. Ouzounis

Computational genomics is a subfield of computational biology that deals with the analysis of entire genome sequences. Transcending the boundaries of classical sequence analysis, computational genomics exploits the inherent properties of entire genomes by modelling them as systems. We review recent developments in the field, discuss in some detail a number of novel approaches that take into account the genomic context and argue that progress will be made by novel knowledge representation and simulation technologies.


PLOS Computational Biology | 2010

A Systems Model for Immune Cell Interactions Unravels the Mechanism of Inflammation in Human Skin

Najl V. Valeyev; Christian Hundhausen; Yoshinori Umezawa; Nikolai V. Kotov; Gareth Williams; Alex Clop; Crysanthi Ainali; Christos A. Ouzounis; Sophia Tsoka; Frank O. Nestle

Inflammation is characterized by altered cytokine levels produced by cell populations in a highly interdependent manner. To elucidate the mechanism of an inflammatory reaction, we have developed a mathematical model for immune cell interactions via the specific, dose-dependent cytokine production rates of cell populations. The model describes the criteria required for normal and pathological immune system responses and suggests that alterations in the cytokine production rates can lead to various stable levels which manifest themselves in different disease phenotypes. The model predicts that pairs of interacting immune cell populations can maintain homeostatic and elevated extracellular cytokine concentration levels, enabling them to operate as an immune system switch. The concept described here is developed in the context of psoriasis, an immune-mediated disease, but it can also offer mechanistic insights into other inflammatory pathologies as it explains how interactions between immune cell populations can lead to disease phenotypes.


FEBS Letters | 2005

Robustness of the p53 network and biological hackers

Lewis R. Dartnell; Evangelos Simeonidis; Michael Hubank; Sophia Tsoka; I. David L. Bogle; Lazaros G. Papageorgiou

The p53 protein interaction network is crucial in regulating the metazoan cell cycle and apoptosis. Here, the robustness of the p53 network is studied by analyzing its degeneration under two modes of attack. Linear Programming is used to calculate average path lengths among proteins and the network diameter as measures of functionality. The p53 network is found to be robust to random loss of nodes, but vulnerable to a targeted attack against its hubs, as a result of its architecture. The significance of the results is considered with respect to mutational knockouts of proteins and the directed attacks mounted by tumour inducing viruses.


BMC Genomics | 2012

Transcriptome classification reveals molecular subtypes in psoriasis

Chrysanthi Ainali; Najl V. Valeyev; Gayathri K. Perera; A. Williams; Johann E. Gudjonsson; Christos A. Ouzounis; Frank O. Nestle; Sophia Tsoka

BackgroundPsoriasis is an immune-mediated disease characterised by chronically elevated pro-inflammatory cytokine levels, leading to aberrant keratinocyte proliferation and differentiation. Although certain clinical phenotypes, such as plaque psoriasis, are well defined, it is currently unclear whether there are molecular subtypes that might impact on prognosis or treatment outcomes.ResultsWe present a pipeline for patient stratification through a comprehensive analysis of gene expression in paired lesional and non-lesional psoriatic tissue samples, compared with controls, to establish differences in RNA expression patterns across all tissue types. Ensembles of decision tree predictors were employed to cluster psoriatic samples on the basis of gene expression patterns and reveal gene expression signatures that best discriminate molecular disease subtypes. This multi-stage procedure was applied to several published psoriasis studies and a comparison of gene expression patterns across datasets was performed.ConclusionOverall, classification of psoriasis gene expression patterns revealed distinct molecular sub-groups within the clinical phenotype of plaque psoriasis. Enrichment for TGFb and ErbB signaling pathways, noted in one of the two psoriasis subgroups, suggested that this group may be more amenable to therapies targeting these pathways. Our study highlights the potential biological relevance of using ensemble decision tree predictors to determine molecular disease subtypes, in what may initially appear to be a homogenous clinical group. The R code used in this paper is available upon request.


Archaea | 2004

Automated metabolic reconstruction for Methanococcus jannaschii

Sophia Tsoka; David Simon; Christos A. Ouzounis

We present the computational prediction and synthesis of the metabolic pathways in Methanococcus jannaschii from its genomic sequence using the PathoLogic software. Metabolic reconstruction is based on a reference knowledge base of metabolic pathways and is performed with minimal manual intervention. We predict the existence of 609 metabolic reactions that are assembled in 113 metabolic pathways and an additional 17 super-pathways consisting of one or more component pathways. These assignments represent significantly improved enzyme and pathway predictions compared with previous metabolic reconstructions, and some key metabolic reactions, previously missing, have been identified. Our results, in the form of enzymatic assignments and metabolic pathway predictions, form a database (MJCyc) that is accessible over the World Wide Web for further dissemination among members of the scientific community.

Collaboration


Dive into the Sophia Tsoka's collaboration.

Top Co-Authors

Avatar

Christos A. Ouzounis

Artificial Intelligence Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Bennett

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Songsong Liu

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge