Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sophie Bestley is active.

Publication


Featured researches published by Sophie Bestley.


Journal of Animal Ecology | 2008

Feeding ecology of wild migratory tunas revealed by archival tag records of visceral warming

Sophie Bestley; Toby A. Patterson; Mark A. Hindell; John S. Gunn

1. Seasonal long-distance migrations are often expected to be related to resource distribution, and foraging theory predicts that animals should spend more time in areas with relatively richer resources. Yet for highly migratory marine species, data on feeding success are difficult to obtain. We analysed the temporal feeding patterns of wild juvenile southern bluefin tuna from visceral warming patterns recorded by archival tags implanted within the body cavity. 2. Data collected during 1998-2000 totalled 6221 days, with individual time series (n = 19) varying from 141 to 496 days. These data span an annual migration circuit including a coastal summer residency within Australian waters and subsequent migration into the temperate south Indian Ocean. 3. Individual fish recommenced feeding between 5 and 38 days after tagging, and feeding events (n = 5194) were subsequently identified on 76.3 +/- 5.8% of days giving a mean estimated daily intake of 0.75 +/- 0.05 kg. 4. The number of feeding events varied significantly with time of day with the greatest number occurring around dawn (58.2 +/- 8.0%). Night feeding, although rare (5.7 +/- 1.3%), was linked to the full moon quarter. Southern bluefin tuna foraged in ambient water temperatures ranging from 4.9 degrees C to 22.9 degrees C and depths ranging from the surface to 672 m, with different targeting strategies evident between seasons. 5. No clear relationship was found between feeding success and time spent within an area. This was primarily due to high individual variability, with both positive and negative relationships observed at all spatial scales examined (grid ranges of 2 x 2 degrees to 10 x 10 degrees ). Assuming feeding success is proportional to forage density, our data do not support the hypothesis that these predators concentrate their activity in areas of higher resource availability. 6. Multiple-day fasting periods were recorded by most individuals. The majority of these (87.8%) occurred during periods of apparent residency within warmer waters (sea surface temperature > 15 degrees C) at the northern edge of the observed migratory range. These previously undocumented nonfeeding periods may indicate alternative motivations for residency. 7. Our results demonstrate the importance of obtaining information on feeding when interpreting habitat utilization from individual animal tracks.


Proceedings of the Royal Society of London B: Biological Sciences | 2012

Integrative modelling of animal movement: incorporating in situ habitat and behavioural information for a migratory marine predator

Sophie Bestley; Ian D. Jonsen; Mark A. Hindell; Christophe Guinet; J.-B. Charrassin

A fundamental goal in animal ecology is to quantify how environmental (and other) factors influence individual movement, as this is key to understanding responsiveness of populations to future change. However, quantitative interpretation of individual-based telemetry data is hampered by the complexity of, and error within, these multi-dimensional data. Here, we present an integrative hierarchical Bayesian state-space modelling approach where, for the first time, the mechanistic process model for the movement state of animals directly incorporates both environmental and other behavioural information, and observation and process model parameters are estimated within a single model. When applied to a migratory marine predator, the southern elephant seal (Mirounga leonina), we find the switch from directed to resident movement state was associated with colder water temperatures, relatively short dive bottom time and rapid descent rates. The approach presented here can have widespread utility for quantifying movement–behaviour (diving or other)–environment relationships across species and systems.


Ecography | 2018

Predicting krill swarm characteristics important for marine predators foraging off East Antarctica

Sophie Bestley; Ben Raymond; Nicholas J. Gales; Robert G. Harcourt; Mark A. Hindell; Ian D. Jonsen; Stephen Nicol; Clara Péron; Michael D. Sumner; Henri Weimerskirch; Simon Wotherspoon; Martin J. Cox

Open ocean predator-prey interactions are often difficult to interpret because of a lack of information on prey fields at scales relevant to predator behaviour. Hence, there is strong interest in identifying the biological and physical factors influencing the distribution and abundance of prey species, which may be of broad predictive use for conservation planning and evaluating effects of environmental change. This study focuses on a key Southern Ocean prey species, Antarctic krill Euphausia superba, using acoustic observations of individual swarms (aggregations) from a large-scale survey off East Antarctica. We developed two sets of statistical models describing swarm characteristics, one set using underway survey data for the explanatory variables, and the other using their satellite remotely sensed analogues. While survey data are in situ and contemporaneous with the swarm data, remotely sensed data are all that is available for prediction and inference about prey distribution in other areas or at other times. The fitted models showed that the primary biophysical influences on krill swarm characteristics included daylight (solar elevation/radiation) and proximity to the Antarctic continental slope, but there were also complex relationships with current velocities and gradients. Overall model performance was similar regardless of whether underway or remotely sensed predictors were used. We applied the latter models to generate regional-scale spatial predictions using a 10-yr remotely-sensed time series. This retrospective modelling identified areas off east Antarctica where relatively dense krill swarms were consistently predicted during austral mid-summers, which may underpin key foraging areas for marine predators. Spatiotemporal predictions along Antarctic predator satellite tracks, from independent studies, illustrate the potential for uptake into further quantitative modelling of predator movements and foraging. The approach is widely applicable to other krill-dependent ecosystems, and our findings are relevant to similar efforts examining biophysical linkages elsewhere in the Southern Ocean and beyond.


bioRxiv | 2018

Movement behaviour responses to environment: fast inference of individual variation with a mixed effects model

Ian D. Jonsen; Clive R. McMahon; Toby A. Patterson; Marie Auger-Méthé; Robert G. Harcourt; Mark A. Hindell; Sophie Bestley

Telemetry data provide a rich source of information on animals use of space, habitat preferences and movement behaviour. Yet habitat models fit to these data are blind to the underlying behavioural context. Conversely, behavioural models accounting for individual variability are too slow for meaningful analysis of large telemetry datasets. Applying new fast-estimation tools, we show how a model incorporating mixed effects within a flexible random walk movement process rapidly infers among-individual variability in environment-movement behaviour relationships. We demonstrate our approach using southern elephant seal (Mirounga leonina) telemetry data. Seals consistently reduced speed and directionality (move persistence) with increasing sea ice coverage, had variable responses to chlorophyll concentration and consistently reduced move persistence in regions where circumpolar deep water shoaled. Our new modelling framework is extensible and substantively advances analysis of telemetry data by allowing fast and flexible mixed effects estimation of potential drivers of movement behaviour processes.


The ISME Journal | 2018

A globally distributed Syndiniales parasite dominates the Southern Ocean micro-eukaryote community near the sea-ice edge

Laurence J. Clarke; Sophie Bestley; Andrew Bissett; Bruce E. Deagle

Syndiniales (Dinophyceae, Alveolata) are a diverse parasitic group common in all marine environments, but their ecological role remains poorly understood. Here we show an unprecedented dominance of a single Syndiniales group I operational taxonomic unit (OTU) across 3000 km of Southern Ocean transects near the sea-ice edge. This super-abundant OTU consistently represented >20%, and in some locations >50%, of eukaryote 18S rDNA sequences. Identical 18S V4 sequences have been isolated from seven Northern Hemisphere locations, and the OTU’s putative V9 rDNA sequence was detected at every station of the global Tara Oceans voyage. Although Syndiniales taxa display some host specificity, our identification of candidate Southern Ocean hosts suggests this OTU associates with distinct phyla in different parts of the world. Our results indicate Syndiniales are key players in surface waters near the vast and dynamic sea-ice edge in the world’s most biologically productive ocean.


Scientific Reports | 2018

Humpback whale migrations to Antarctic summer foraging grounds through the southwest Pacific Ocean

V. Andrews-Goff; Sophie Bestley; Nicholas J. Gales; S. M. Laverick; D. Paton; Andrea M. Polanowski; N. T. Schmitt; Mike C. Double

Humpback whale (Megaptera novaeangliae) populations typically undertake seasonal migrations, spending winters in low latitude breeding grounds and summers foraging in high latitude feeding grounds. Until recently, a broad scale understanding of whale movement has been derived from whaling records, Discovery marks, photo identification and genetic analyses. However, with advances in satellite tagging technology and concurrent development of analytical methodologies we can now detail finer scale humpback whale movement, infer behavioural context and examine how these animals interact with their physical environment. Here we describe the temporal and spatial characteristics of migration along the east Australian seaboard and into the Southern Ocean by 30 humpback whales satellite tagged over three consecutive austral summers. We characterise the putative Antarctic feeding grounds and identify supplemental foraging within temperate, migratory corridors. We demonstrate that Antarctic foraging habitat is associated with the marginal ice zone, with key predictors of inferred foraging behaviour including distance from the ice edge, ice melt rate and variability in ice concentration two months prior to arrival. We discuss the highly variable ice season within the putative foraging habitat and the implications that this and other environmental factors may have on the continued strong recovery of this humpback whale population.


Scientific Reports | 2018

Coastal polynyas: Winter oases for subadult southern elephant seals in East Antarctica

Sara Labrousse; Gd Williams; Takeshi Tamura; Sophie Bestley; Jean-Baptiste Sallée; Alexander D. Fraser; Michael D. Sumner; Fabien Roquet; Karine Heerah; Baptiste Picard; Christophe Guinet; Robert G. Harcourt; Clive R. McMahon; Mark A. Hindell; Jean Benoit Charrassin

Antarctic coastal polynyas are regions of persistent open water and are thought to be key bio-physical features within the sea-ice zone. However, their use by the upper trophic levels of ecosystems remains unclear. A unique bio-physical dataset recorded by southern elephant seals reveals that East Antarctic polynyas are a key winter foraging habitat for male seals. During their post-moult trips from Isles Kerguelen to the Antarctic continental shelf, a total of 18 out of 23 seals visited 9 different polynyas, spending on average 25 ± 20% (up to 75%) of their total trip time inside polynyas. Changes in seal foraging and diving behaviours are observed inside polynyas as compared to outside polynyas. Two polynya usages by seals are observed for the inactive and active polynya phases, pointing to different seasonal peaks in prey abundance. During the active polynya phase, we link seal foraging behaviour to changes in the physical stability of the water-column, which likely impact the seasonal biological dynamics within polynyas.


Marine Environmental Research | 2018

Otolith nucleus chemistry distinguishes Electrona antarctica in the westward-flowing Antarctic Slope Current and eastward-flowing Antarctic Circumpolar Current off East Antarctica

Guoping Zhu; Mi Duan; Julian Ashford; Lian Wei; Mengxiao Zhou; Sophie Bestley

Eastward transport in the Southern Ocean is concentrated in jets associated with fronts in the Antarctic Circumpolar Current (ACC), whereas flow along the Antarctic continental slope is strongly westward in the Antarctic Slope Current (ASC). The dominant mesopelagic fish endemic to the Southern Ocean, Electrona antarctica (Günther, 1878), has been linked to Circumpolar Deep Water (CDW) transported by the ACC, and a modified version of CDW associated with the ASC. In conjunction with a regional-scale hydrographic survey south of the Kerguelen Plateau, we sampled fish from the ACC and ASC across Princess Elizabeth Trough off East Antarctica, and examined their otolith chemistry. Material laid down in the nucleus during early life showed heterogeneity, arguing against a single homogeneous population. Instead, it suggested exposure to different environments after hatching, consistent with separate transport pathways along the ACC and ASC. Despite clear differences between stations documented in the survey, material laid down along the edge did not show heterogeneity, suggesting instead exposure to similar environments. Seasonal movement northward by ASC fish into the ACC may explain both these results, and potential physical mechanisms include circulation in the Australian-Antarctic Gyre; northward movement of slope waters along the eastern margin of Princess Elizabeth Trough; and seasonal extension of sea-ice into the ACC. Such meridional movement would expose fish to zonal flow, eastward in the ACC during winter and westward in the ASC during summer, promoting regional retention as well as creating opportunities for mixing with fish transported along the ACC.


Journal of Geophysical Research | 2018

Sustained Upwelling of Subsurface Iron Supplies Seasonally Persistent Phytoplankton Blooms Around the Southern Kerguelen Plateau, Southern Ocean

Christina Schallenberg; Sophie Bestley; Andreas Klocker; Thomas W. Trull; Diana M. Davies; Melanie Gault‐Ringold; Ruth Eriksen; Nicholas P. Roden; Sylvia G. Sander; Michael D. Sumner; Ashley T. Townsend; Pier van der Merwe; Karen J. Westwood; Kathrin Wuttig; Andrew R. Bowie

Although the supply of iron generally limits phytoplankton productivity in the Southern Ocean, substantial seasonal blooms are observed over and downstream of the Kerguelen plateau in the Indian sector of the Southern Ocean. Surprisingly, of the oceanic blooms, those associated with the deeper southern plateau last much longer (~3 months) than the northern bloom (~1‐month downstream of northern plateau). In this study, iron supply mechanisms around the southern plateau were investigated, obtaining profiles of dissolved iron (<0.2 μm, dFe) to 2,000‐m deep at 25 stations during austral summer 2016. The dFe concentrations in surface waters (≤100‐m depth) ranged from below the detection limit (DL, median of 0.026 nmol/kg) to 0.34 nmol/kg near the Antarctic shelf, with almost half the data points below detection. These low and—with few exceptions—largely spatially invariant concentrations, presumably driven by seasonal drawdown of this essential micronutrient by phytoplankton, could not explain observed patterns in chlorophyll a. In contrast, dFe concentrations (0.05–1.27 nmol/kg) in subsurface waters (100–800 m) showed strong spatial variations that can explain bloom patterns around the southern Kerguelen plateau when considered in the context of frontal locations and associated frontal processes, including upwelling, that may increase the upward supply of dFe in the region. This sustained vertical dFe supply distinguishes the southern blooms from the bloom downstream of the northern Kerguelen plateau and explains their persistence through the season.


PLOS ONE | 2017

Bio-physical characterisation of polynyas as a key foraging habitat for juvenile male southern elephant seals ( Mirounga leonina ) in Prydz Bay, East Antarctica

Veda Malpress; Sophie Bestley; Stuart Corney; Dirk Welsford; Sara Labrousse; Michael D. Sumner; Mark A. Hindell

Antarctic coastal polynyas are persistent open water areas in the sea ice zone, and regions of high biological productivity thought to be important foraging habitat for marine predators. This study quantified southern elephant seal (Mirounga leonina) habitat use within and around the polynyas of the Prydz Bay region (63°E– 88°E) in East Antarctica, and examined the bio-physical characteristics structuring polynyas as foraging habitat. Output from a climatological regional ocean model was used to provide context for in situ temperature-salinity vertical profiles collected by tagged elephant seals and to characterise the physical properties structuring polynyas. Biological properties were explored using remotely-sensed surface chlorophyll (Chl-a) and, qualitatively, historical fish assemblage data. Spatially gridded residence time of seals was examined in relation to habitat characteristics using generalized additive mixed models. The results showed clear polynya usage during early autumn and increasingly concentrated usage during early winter. Bathymetry, Chl-a, surface net heat flux (representing polynya location), and bottom temperature were identified as significant bio-physical predictors of the spatio-temporal habitat usage. The findings from this study confirm that the most important marine habitats for juvenile male southern elephant seals within Prydz Bay region are polynyas. A hypothesis exists regarding the seasonal evolution of primary productivity, coupling from surface to subsurface productivity and supporting elevated rates of secondary production in the upper water column during summer-autumn. An advancement to this hypothesis is proposed here, whereby this bio-physical coupling is likely to extend throughout the water column as it becomes fully convected during autumn-winter, to also promote pelagic-benthic linkages important for benthic foraging within polynyas.

Collaboration


Dive into the Sophie Bestley's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael D. Sumner

Australian Antarctic Division

View shared research outputs
Top Co-Authors

Avatar

Nicholas J. Gales

Australian Antarctic Division

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John S. Gunn

CSIRO Marine and Atmospheric Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Newbery

Australian Antarctic Division

View shared research outputs
Top Co-Authors

Avatar

Klaus M. Meiners

Australian Antarctic Division

View shared research outputs
Researchain Logo
Decentralizing Knowledge