Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sophie Chat is active.

Publication


Featured researches published by Sophie Chat.


Biomaterials | 2011

Long term in vivo biotransformation of iron oxide nanoparticles.

Michael Levy; Nathalie Luciani; Damien Alloyeau; Vanessa Deveaux; Christine Péchoux; Sophie Chat; Guillaume Wang; Nidhi Vats; Francois Gendron; Cécile Factor; Alain Luciani; Claire Wilhelm; Florence Gazeau

The long term outcome of nanoparticles in the organism is one of the most important concerns raised by the development of nanotechnology and nanomedicine. Little is known on the way taken by cells to process and degrade nanoparticles over time. In this context, iron oxide superparamagnetic nanoparticles benefit from a privileged status, because they show a very good tolerance profile, allowing their clinical use for MRI diagnosis. It is generally assumed that the specialized metabolism which regulates iron in the organism can also handle iron oxide nanoparticles. However the biotransformation of iron oxide nanoparticles is still not elucidated. Here we propose a multiscale approach to study the fate of nanomagnets in the organism. Ferromagnetic resonance and SQUID magnetization measurements are used to quantify iron oxide nanoparticles and follow the evolution of their magnetic properties. A nanoscale structural analysis by electron microscopy complements the magnetic follow-up of nanoparticles injected to mice. We evidence the biotransformation of superparamagnetic maghemite nanoparticles into poorly-magnetic iron species probably stored into ferritin proteins over a period of three months. A putative mechanism is proposed for the biotransformation of iron-oxide nanoparticles.


Circulation | 2015

Endothelial-to-Mesenchymal Transition in Pulmonary Hypertension

Benoit Ranchoux; Fabrice Antigny; Catherine Rucker-Martin; Aurélie Hautefort; Christine Péchoux; Harm J. Bogaard; Peter Dorfmüller; Séverine Rémy; Florence Lecerf; Sylvie Planté; Sophie Chat; Elie Fadel; Amal Houssaini; Ignacio Anegon; Serge Adnot; Gérald Simonneau; Marc Humbert; Sylvia Cohen-Kaminsky; Frédéric Perros

Background— The vascular remodeling responsible for pulmonary arterial hypertension (PAH) involves predominantly the accumulation of &agr;-smooth muscle actin–expressing mesenchymal-like cells in obstructive pulmonary vascular lesions. Endothelial-to-mesenchymal transition (EndoMT) may be a source of those &agr;-smooth muscle actin–expressing cells. Methods and Results— In situ evidence of EndoMT in human PAH was obtained by using confocal microscopy of multiple fluorescent stainings at the arterial level, and by using transmission electron microscopy and correlative light and electron microscopy at the ultrastructural level. Findings were confirmed by in vitro analyses of human PAH and control cultured pulmonary artery endothelial cells. In addition, the mRNA and protein signature of EndoMT was recognized at the arterial and lung level by quantitative real-time polymerase chain reaction and Western blot analyses. We confirmed our human observations in established animal models of pulmonary hypertension (monocrotaline and SuHx). After establishing the first genetically modified rat model linked to BMPR2 mutations (BMPR2&Dgr;140Ex1/+ rats), we demonstrated that EndoMT is linked to alterations in signaling of BMPR2, a gene that is mutated in 70% of cases of familial PAH and in 10% to 40% of cases of idiopathic PAH. We identified molecular actors of this pathological transition, including twist overexpression and vimentin phosphorylation. We demonstrated that rapamycin partially reversed the protein expression patterns of EndoMT, improved experimental PAH, and decreased the migration of human pulmonary artery endothelial cells, providing the proof of concept that EndoMT is druggable. Conclusions— EndoMT is linked to alterations in BPMR2 signaling and is involved in the occlusive vas cular remodeling of PAH, findings that may have therapeutic implications.


Biomaterials | 2014

Magnetic hyperthermia efficiency in the cellular environment for different nanoparticle designs.

Riccardo Di Corato; Ana Espinosa; Lénaic Lartigue; Mickaël Tharaud; Sophie Chat; Teresa Pellegrino; Christine Ménager; Florence Gazeau; Claire Wilhelm

Magnetic hyperthermia mediated by magnetic nanomaterials is one promising antitumoral nanotherapy, particularly for its ability to remotely destroy deep tumors. More and more new nanomaterials are being developed for this purpose, with improved heat-generating properties in solution. However, although the ultimate target of these treatments is the tumor cell, the heating efficiency, and the underlying mechanisms, are rarely studied in the cellular environment. Here we attempt to fill this gap by making systematic measurements of both hyperthermia and magnetism in controlled cell environments, using a wide range of nanomaterials. In particular, we report a systematic fall in the heating efficiency for nanomaterials associated with tumour cells. Real-time measurements showed that this loss of heat-generating power occurred very rapidly, within a matter of minutes. The fall in heating correlated with the magnetic characterization of the samples, demonstrating a complete inhibition of the Brownian relaxation in cellular conditions.


Molecular & Cellular Proteomics | 2013

Surface Proteome Analysis of a Natural Isolate of Lactococcus lactis Reveals the Presence of Pili Able to Bind Human Intestinal Epithelial Cells

Mickael Meyrand; Alain Guillot; Mélodie Goin; Sylviane Furlan; Julija Armalyte; Saulius Kulakauskas; Ginette Thomas; Sophie Chat; Christine Péchoux; Vincent Dupres; Pascal Hols; Yves F. Dufrêne; Germain Trugnan; Marie-Pierre Chapot-Chartier

Surface proteins of Gram-positive bacteria play crucial roles in bacterial adhesion to host tissues. Regarding commensal or probiotic bacteria, adhesion to intestinal mucosa may promote their persistence in the gastro-intestinal tract and their beneficial effects to the host. In this study, seven Lactococcus lactis strains exhibiting variable surface physico-chemical properties were compared for their adhesion to Caco-2 intestinal epithelial cells. In this test, only one vegetal isolate TIL448 expressed a high-adhesion phenotype. A nonadhesive derivative was obtained by plasmid curing from TIL448, indicating that the adhesion determinants were plasmid-encoded. Surface-exposed proteins in TIL448 were analyzed by a proteomic approach consisting in shaving of the bacterial surface with trypsin and analysis of the released peptides by LC-MS/MS. As the TIL448 complete genome sequence was not available, the tryptic peptides were identified by a mass matching approach against a database including all Lactococcus protein sequences and the sequences deduced from partial DNA sequences of the TIL448 plasmids. Two surface proteins, encoded by plasmids in TIL448, were identified as candidate adhesins, the first one displaying pilin characteristics and the second one containing two mucus-binding domains. Inactivation of the pilin gene abolished adhesion to Caco-2 cells whereas inactivation of the mucus-binding protein gene had no effect on adhesion. The pilin gene is located inside a cluster of four genes encoding two other pilin-like proteins and one class-C sortase. Synthesis of pili was confirmed by immunoblotting detection of high molecular weight forms of pilins associated to the cell wall as well as by electron and atomic force microscopy observations. As a conclusion, surface proteome analysis allowed us to detect pilins at the surface of L. lactis TIL448. Moreover we showed that pili appendages are formed and involved in adhesion to Caco-2 intestinal epithelial cells.


European Journal of Cell Biology | 2011

Characterisation of the potential SNARE proteins relevant to milk product release by mouse mammary epithelial cells

Sophie Chat; Sarah Layani; Clémentine Mahaut; Céline Henry; Eric Chanat; Sandrine Truchet

Casein micelles and fat globules are essential components of milk and are both secreted at the apical side of mammary epithelial cells during lactation. Milk fat globules are excreted by budding, being enwrapped by the apical plasma membrane, while caseins contained in transport vesicles are released by exocytosis. Nevertheless, the molecular mechanisms governing casein exocytosis are, to date, not fully deciphered. SNARE proteins are known to take part in cellular membrane trafficking and in exocytosis events in many cell types and we therefore attempted to identify those relevant to casein secretion. With this aim, we performed a detailed analysis of their expression by RT-PCR in both whole mouse mammary gland and in purified mammary acini at various physiological stages, as well as in the HC11 cell line. The expression of some regulatory proteins involved in SNARE complex formation such as Munc-13, Munc-18 and complexins was also explored. The amount of certain SNAREs appeared to be regulated depending on the physiological stage of the mammary gland. Co-immunoprecipitation experiments indicated that SNAP-23 interacted with syntaxin-6, -7 and -12, as well as with VAMP-3, -4 and -8 in mammary epithelial cells during lactation. Finally, the subcellular localisation of candidate SNAREs in these cells was determined both by indirect immunofluorescence and immunogold labelling. The present work provides important new data concerning SNARE proteins in mammary epithelial cells and points to SNAP-23 as a potential central player for the coupling of casein and milk fat globule secretion during lactation.


Cell and Tissue Research | 2010

Oleate and linoleate stimulate degradation of β-casein in prolactin-treated HC11 mouse mammary epithelial cells.

Alain Pauloin; Sophie Chat; Christine Péchoux; Catherine Hue-Beauvais; Stéphanie Droineau; Laurent Galio; Eve Devinoy; Eric Chanat

Although virtually all cells store neutral lipids as cytoplasmic lipid droplets, mammary epithelial cells have developed a specialized function to secrete them as milk fat globules. We have used the mammary epithelial cell line HC11 to evaluate the potential connections between the lipid and protein synthetic pathways. We show that unsaturated fatty acids induce a pronounced proliferation of cytoplasmic lipid droplets and stimulate the synthesis of adipose differentiation-related protein. Unexpectedly, the cellular level of β-casein, accumulated under lactogenic hormone treatment, decreases following treatment of the cells with unsaturated fatty acids. In contrast, saturated fatty acids have no significant effect on either cytoplasmic lipid droplet proliferation or cellular β-casein levels. We demonstrate that the action of unsaturated fatty acids on the level of β-casein is post-translational and requires protein synthesis. We have also observed that proteasome inhibitors potentiate β-casein degradation, indicating that proteasomal activity can destroy some cytosolic protein(s) involved in the process that negatively controls β-casein levels. Finally, lysosome inhibitors block the effect of unsaturated fatty acids on the cellular level of β-casein. Our data thus suggest that the degradation of β-casein occurs via the microautophagic pathway.


PLOS ONE | 2014

DNA Methylation and Transcription in a Distal Region Upstream from the Bovine AlphaS1 Casein Gene after Once or Twice Daily Milking

Minh Nguyen; Marion Boutinaud; Barbara Petridou; Anne Gabory; Maëlle Pannetier; Sophie Chat; Stephan Bouet; Luc Jouneau; Florence Jaffrézic; Denis Laloë; Christophe Klopp; Nicolas Brun; Clémence Kress; Hélène Jammes; Madia Charlier; Eve Devinoy

Once daily milking (ODM) induces a reduction in milk production when compared to twice daily milking (TDM). Unilateral ODM of one udder half and TDM of the other half, enables the study of underlying mechanisms independently of inter-individual variability (same genetic background) and of environmental factors. Our results show that in first-calf heifers three CpG, located 10 kb upstream from the CSN1S1 gene were methylated to 33, 34 and 28%, respectively, after TDM but these levels were higher after ODM, 38, 38 and 33%, respectively. These methylation levels were much lower than those observed in the mammary gland during pregnancy (57, 59 and 50%, respectively) or in the liver (74, 78 and 61%, respectively). The methylation level of a fourth CpG (CpG4), located close by (29% during TDM) was not altered after ODM. CpG4 methylation reached 39.7% and 59.5%, during pregnancy or in the liver, respectively. CpG4 is located within a weak STAT5 binding element, arranged in tandem with a second high affinity STAT5 element. STAT5 binding is only marginally modulated by CpG4 methylation, but it may be altered by the methylation levels of the three other CpG nearby. Our results therefore shed light on mechanisms that help to explain how milk production is almost, but not fully, restored when TDM is resumed (15.1±0.2 kg/day instead of 16.2±0.2 kg/day, p<0.01). The STAT5 elements are 100 bp away from a region transcribed in the antisense orientation, in the mammary gland during lactation, but not during pregnancy or in other reproductive organs (ovary or testes). We now need to clarify whether the transcription of this novel RNA is a consequence of STAT5 interacting with the CSN1S1 distal region, or whether it plays a role in the chromatin structure of this region.


Journal of Mammary Gland Biology and Neoplasia | 2014

Milk secretion: The role of SNARE proteins.

Sandrine Truchet; Sophie Chat; Michèle Ollivier-Bousquet

During lactation, polarized mammary epithelial secretory cells (MESCs) secrete huge quantities of the nutrient molecules that make up milk, i.e. proteins, fat globules and soluble components such as lactose and minerals. Some of these nutrients are only produced by the MESCs themselves, while others are to a great extent transferred from the blood. MESCs can thus be seen as a crossroads for both the uptake and the secretion with cross-talks between intracellular compartments that enable spatial and temporal coordination of the secretion of the milk constituents. Although the physiology of lactation is well understood, the molecular mechanisms underlying the secretion of milk components remain incompletely characterized. Major milk proteins, namely caseins, are secreted by exocytosis, while the milk fat globules are released by budding, being enwrapped by the apical plasma membrane. Prolactin, which stimulates the transcription of casein genes, also induces the production of arachidonic acid, leading to accelerated casein transport and/or secretion. Because of their ability to form complexes that bridge two membranes and promote their fusion, SNARE (Soluble N-ethylmaleimide-Sensitive Factor Attachment Protein Receptor) proteins are involved in almost all intracellular trafficking steps and exocytosis. As SNAREs can bind arachidonic acid, they could be the effectors of the secretagogue effect of prolactin in MESCs. Indeed, some SNAREs have been observed between secretory vesicles and lipid droplets suggesting that these proteins could not only orchestrate the intracellular trafficking of milk components but also act as key regulators for both the coupling and coordination of milk product secretion in response to hormones.


Experimental and Molecular Pathology | 2014

Involvement of mitochondrial dysfunction and ER-stress in the physiopathology of equine osteochondritis dissecans (OCD).

Clémence Desjardin; Sophie Chat; Mailys Gilles; Rachel Legendre; Julie Rivière; Xavier Mata; Thierry Balliau; Diane Esquerre; Edmond Cribiu; Jean-Marc Betch; Laurent Schibler

Osteochondrosis (OC) is a developmental bone disorder affecting several mammalian species including the horse. Equine OC is described as a focal disruption of endochondral ossification, leading to osteochondral lesions (osteochondritis dissecans, OCD) that may release free bodies within the joint. OCD lesions trigger joint swelling, stiffness and lameness and affects about 30% of the equine population. OCD is considered as multifactorial but its physiopathology is still poorly understood and genes involved in genetic predisposition are still unknown. Our study compared two healthy and two OC-affected 18-month-old French Trotters diagnosed with OCD lesions at the intermediate ridge of the distal tibia. A comparative shot-gun proteomic analysis of non-wounded cartilage and sub-chondral bone from healthy (healthy samples) and OC-affected foals (predisposed samples) identified 83 and 53 modulated proteins, respectively. These proteins are involved in various biological pathways including matrix structure and maintenance, protein biosynthesis, folding and transport, mitochondrial activity, energy and calcium metabolism. Transmission electron microscopy revealed typical features of mitochondrial swelling and ER-stress, such as large, empty mitochondria, and hyper-dilated rough endoplasmic reticulum, in the deep zone of both OC lesions and predisposed cartilage. Abnormal fibril organization surrounding chondrocytes and abnormal features at the ossification front were also observed. Combining these findings with quantitative trait loci and whole genome sequencing results identified about 140 functional candidate genes carrying putative damaging mutations in 30 QTL regions. In summary, our study suggests that OCD lesions may result from defective hypertrophic terminal differentiation associated with mitochondrial dysfunction and ER-stress, leading to impaired cartilage and bone biomechanical properties, making them prone to fractures. In addition, 11 modulated proteins and several candidate mutations located in QTL regions were identified, bringing new insight into the molecular physiopathology and genetic basis of OCD.


Cell and Tissue Research | 2007

Localisation of caveolin in mammary tissue depends on cell type

Catherine Hue-Beauvais; Christine Péchoux; Edwige Bouguyon; Sophie Chat; Sandrine Truchet; Alain Pauloin; Yann Le Gouar; Michèle Ollivier-Bousquet

Caveolins, components of caveolae, are expressed in mammary tissue. In order to determine whether caveolins are present in different mammary cell types and whether their localisation depends on the physiological stage or species, cav-1 and cav-2 were characterised by immunoblotting in mammary tissues from the mouse, ewe and rabbit and localised, by immunofluorescence and electron microscopy, in mammary tissues from the mouse and ewe. At all the physiological stages studied, cav-1 and cav-2 were present in endothelial and myoepithelial cells in which flask-shaped caveolae were abundant. However, labelling of cav-1 and cav-2 associated with small vesiculo-tubular structures (including those close to lipid droplets) was low in epithelial cells. To study the possible association of cav-1 with lipid droplets, lactating ewe mammary fragments were treated in vitro with brefeldin A. This treatment did not modify the association of cav-1-labelled structures with lipid droplets. Finally, HC11 and MCF-10A mammary cell lines were treated with oleic acid. The total quantity of cav-1 was little affected by the treatment, although the lipid droplet labelling of cav-1 was amplified in MCF-10A cells. Thus, the synthesis and localisation of caveolins are mostly dependent upon the cell types of mammary tissue and upon their state of differentiation.

Collaboration


Dive into the Sophie Chat's collaboration.

Top Co-Authors

Avatar

Christine Péchoux

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Eve Devinoy

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Sandrine Truchet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Eric Chanat

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Céline Henry

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Florence Jaffrézic

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Laurent Galio

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Madia Charlier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Alain Pauloin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Denis Laloë

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge