Sophie Groux-Degroote
university of lille
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sophie Groux-Degroote.
Carbohydrate Research | 2010
Aurélie Cazet; Sylvain Julien; Marie Bobowski; Marie-Ange Krzewinski-Recchi; Anne Harduin-Lepers; Sophie Groux-Degroote; Philippe Delannoy
Changes in cell surface glycosylation are common modifications that occur during oncogenesis, leading to the over-expression of tumour-associated carbohydrate antigens (TACA). Most of these antigens are sialylated and the increase of sialylation is a well-known feature of transformed cells. In breast cancer, expression of TACA such as sialyl-Lewis(x) or sialyl-Tn is usually associated with a poor prognosis and a decreased overall survival of patients. However, the specific role of these sialylated antigens in breast tumour development and aggressiveness is not clearly understood. These glycosylation changes result from the modification of the expression of genes encoding specific glycosyltransferases involved in glycan biosynthesis and the level of expression of sialyltransferase genes has been proposed to be a prognostic marker for the follow-up of breast cancer patients. Several human cellular models have been developed in order to explain the mechanisms by which carbohydrate antigens can reinforce breast cancer progression and aggressiveness. TACA expression is associated with changes in cell adhesion, migration, proliferation and tumour growth. In addition, recent data on glycolipid biosynthesis indicate an important role of G(D3) synthase expression in breast cancer progression. The aim of this review is to summarize our current knowledge of sialylation changes that occur in breast cancer and to describe the cellular models developed to analyze the consequences of these changes on disease progression and aggressiveness.
Biochemical Journal | 2008
Sophie Groux-Degroote; Marie-Ange Krzewinski-Recchi; Aurélie Cazet; Audrey Vincent; Sylvain Lehoux; Jean-Jacques Lafitte; Isabelle Van Seuningen; Philippe Delannoy
Bronchial mucins from patients suffering from CF (cystic fibrosis) exhibit glycosylation alterations, especially increased amounts of the sialyl-Lewis(x) (NeuAcalpha2-3Galbeta1-4[Fucalpha1-3]GlcNAc-R) and 6-sulfo-sialyl-Lewis(x) (NeuAcalpha2-3Galbeta1-4[Fucalpha1-3][SO(3)H-6]GlcNAc-R) terminal structures. These epitopes are preferential receptors for Pseudomonas aeruginosa, the bacteria responsible for the chronicity of airway infection and involved in the morbidity and early death of CF patients. However, these glycosylation changes cannot be directly linked to defects in CFTR (CF transmembrane conductance regulator) gene expression since cells that secrete airway mucins express no or very low amounts of the protein. Several studies have shown that inflammation may affect glycosylation and sulfation of various glycoproteins, including mucins. In the present study, we show that incubation of macroscopically healthy fragments of human bronchial mucosa with IL-6 (interleukin-6) or IL-8 results in a significant increase in the expression of alpha1,3/4-fucosyltransferases [FUT11 (fucosyltransferase 11 gene) and FUT3], alpha2-6- and alpha2,3-sialyltransferases [ST3GAL6 (alpha2,3-sialyltransferase 6 gene) and ST6GAL2 (alpha2,6-sialyltransferase 2 gene)] and GlcNAc-6-O-sulfotransferases [CHST4 (carbohydrate sulfotransferase 4 gene) and CHST6] mRNA. In parallel, the amounts of sialyl-Lewis(x) and 6-sulfo-sialyl-Lewis(x) epitopes at the periphery of high-molecular-mass proteins, including MUC4, were also increased. In conclusion, our results indicate that IL-6 and -8 may contribute to the increased levels of sialyl-Lewis(x) and 6-sulfo-sialyl-Lewis(x) epitopes on human airway mucins from patients with CF.
Frontiers in Bioscience | 2012
Anne Harduin-Lepers; Marie-Ange Krzewinski-Recchi; Florent Colomb; François Foulquier; Sophie Groux-Degroote; Philippe Delannoy
Abnormally elevated levels of sialylated tumor associated carbohydrate antigens are frequently described at the surface of cancer cells and/or secreted in biological fluids. It is now well established that this over-expression may result from deregulation in sialyltransferases enzymatic activity involved in their biosynthesis, but the precise molecular mechanisms remain unknown. Twenty different human sialyltransferases preside to the sialylation of glycoconjugates, either glycolipids or glycoproteins. This review summarizes the current knowledge on human sialyltransferases implicated in the altered expression of sialylated tumor associated antigens, the molecular basis of their regulated expression in cancer cells and the various tools developed by researchers and clinicians for their study in pathological samples.
Biological Chemistry | 2009
Aurélie Cazet; Sophie Groux-Degroote; Béatrice Teylaert; Kyung-Min Kwon; Sylvain Lehoux; Christian Slomianny; Cheorl-Ho Kim; Xuefen Le Bourhis; Philippe Delannoy
Abstract The disialoganglioside GD3 is an oncofetal marker of a variety of human tumors including melanoma and neuroblastoma, playing a key role in tumor progression. GD3 and 9-O-acetyl-GD3 are overexpressed in approximately 50% of invasive ductal breast carcinoma, but no relationship has been established between disialoganglioside expression and breast cancer progression. In order to determine the effect of GD3 expression on breast cancer development, we analyzed the biosynthesis of gangliosides in several breast epithelial cell lines including MDA-MB-231, MCF-7, BT-20, T47-D, and MCF10A, by immunocytochemistry, flow cytometry, and real-time PCR. Our results show that, in comparison to tumors, cultured breast cancer cells express a limited pattern of gangliosides. Disialogangliosides were not detected in any cell line and GM3 was only observed at the cell surface of MDA-MB-231 cells. To evaluate the influence of GD3 in breast cancer cell behavior, we established and characterized MDA-MB-231 cells overexpressing GD3 synthase. We show that GD3 synthase expressing cells accumulate GD3, GD2, and GT3 at the cell surface. Moreover, GD3 synthase overexpression bypasses the need of serum for cell growth and increases cell migration. This suggests that GD3 synthase overexpression may contribute to increasing the malignant properties of breast cancer cells.
Glycoconjugate Journal | 2009
François Trottein; Lana Schaffer; Stoyan Ivanov; Christophe Paget; Catherine Vendeville; Aurélie Cazet; Sophie Groux-Degroote; Suzanna Lee; Marie-Ange Krzewinski-Recchi; Christelle Faveeuw; Steven R. Head; Philippe Gosset; Philippe Delannoy
Using a focused glycan-gene microarray, we compared the glycosyltransferase (GT) and sulfotransferase gene expression profiles of human monocytes, dendritic cells (DCs) and macrophages (Mϕs), isolated or differentiated from the same donors. Microarray analysis indicated that monocytes express transcripts for a full set of enzymes involved in the biosynthesis of multi-multiantennary branched N-glycans, potentially elongated by poly-N-acetyl-lactosamine chains, and of mucin-type Core 1 and Core 2 sialylated O-glycans. Monocytes also express genes involved in the biosynthesis and modification of glycosaminoglycans, but display a limited expression of GTs implicated in glycolipid synthesis. Among genes expressed in monocytes (90 out of 175), one third is significantly modulated in DCs and Mϕ respectively, most of them being increased in both cell types relative to monocytes. These changes might potentially enforce the capacity of differentiated cells to synthesize branched N-glycans and mucin-type O-glycans and to remodel cell surface proteoglycans. Stimulation of DCs and Mϕs with lipopolysaccharide caused a general decrease in gene expression, mainly affecting genes found to be positively modulated during the differentiation steps. Interestingly, although a similar set of enzymes are modulated in the same direction in mature DCs and Mϕs, cell specific genes are also differentially regulated during maturation, a phenomenon that may sustain functional specificities. Validation of this analysis was provided by quantitative real-time PCR and flow cytometry of cell surface glycan antigens. Collectively, this study implies an important modification of the pattern of glycosylation in DCs and Mϕs undergoing differentiation and maturation with potential biological consequences.
Traffic | 2008
Sophie Groux-Degroote; S.M. van Dijk; Jasja Wolthoorn; Sylvia Neumann; A.C. Theos; A.M.G.L. de Mazière; Judith Klumperman; G. van Meer; Hein Sprong
Melanosomes are lysosome‐related organelles that coexist with lysosomes in mammalian pigment cells. Melanosomal and lysosomal membrane proteins share similar sorting signals in their cytoplasmic tail, raising the question how they are segregated. We show that in control melanocytes, the melanosomal enzymes tyrosinase‐related protein 1 (Tyrp1) and tyrosinase follow an intracellular Golgi to melanosome pathway, whereas in the absence of glycosphingolipids, they are observed to pass over the cell surface. Unexpectedly, the lysosome‐associated membrane protein 1 (LAMP‐1) and 2 behaved exactly opposite: they were found to travel through the cell surface in control melanocytes but followed an intracellular pathway in the absence of glycosphingolipids. Chimeric proteins having the cytoplasmic tail of Tyrp1 or tyrosinase were transported like lysosomal proteins, whereas a LAMP‐1 construct containing the lumenal domain of Tyrp1 localized to melanosomes. In conclusion, the lumenal domain contains sorting information that guides Tyrp1 and probably tyrosinase to melanosomes by an intracellular route that excludes lysosomal proteins and requires glucosylceramide.
The International Journal of Biochemistry & Cell Biology | 2014
Sophie Groux-Degroote; Cindy Wavelet; Marie-Ange Krzewinski-Recchi; Lucie Portier; Marlène Mortuaire; Adriana Mihalache; Marco Trinchera; Philippe Delannoy; Nadia Malagolini; Mariella Chiricolo; Fabio Dall’Olio; Anne Harduin-Lepers
The histo blood group carbohydrate Sd(a) antigen and its cognate biosynthetic enzyme B4GALNT2 show the highest level of expression in normal colon. Their dramatic down regulation previously observed in colon cancer tissues could play a role in the concomitant elevation of the selectin ligand sLe(x), involved in metastasis. However, down regulation of sLe(x) expression by B4GALNT2 has been so far demonstrated in vitro, but not in tissues. The human B4GALNT2 gene specifies at least two transcripts, diverging in the first exon, never studied in normal and cancer tissues. The long form contains a 253 nt exon 1L; the short form contains a 38 nt exon 1S. Using qPCR, we showed that cell lines and normal or cancerous colon, expressed almost exclusively the short form, while the long form was mainly expressed by the embryonic colon fibroblast cell line CCD112CoN. Immunochemistry approaches using colon cancer cells permanently expressing either B4GALNT2 cDNAs as controls, led to the observation of several protein isoforms in human normal and cancerous colon, and cell lines. We showed that tissues expressing B4GALNT2 protein isoforms were able to induce Sd(a) and to inhibit sLe(x) expression; both of which are expressed mainly on PNGase F-insensitive carbohydrate chains. Concomitant expression of B4GALNT2 and siRNA-mediated inhibition of FUT6, the major fucosyltransferase involved in sLe(x) synthesis in colon, resulted in a cumulative inhibition of sLe(x). In normal colon samples a significant relationship between sLe(x) expression and the ratio between FUT6/B4GALNT2 activities exists, demonstrating for the first time a role for B4GALNT2 in sLe(x) inhibition in vivo.
Cells | 2016
Justine H. Dewald; Florent Colomb; Marie Bobowski-Gerard; Sophie Groux-Degroote; Philippe Delannoy
Glycosylation is one of the most important modifications of proteins and lipids, and cell surface glycoconjugates are thought to play important roles in a variety of biological functions including cell-cell and cell-substrate interactions, bacterial adhesion, cell immunogenicity and cell signaling. Alterations of glycosylation are observed in number of diseases such as cancer and chronic inflammation. In that context, pro-inflammatory cytokines have been shown to modulate cell surface glycosylation by regulating the expression of glycosyltransferases involved in the biosynthesis of carbohydrate chains. These changes in cell surface glycosylation are also known to regulate cell signaling and could contribute to disease pathogenesis. This review summarizes our current knowledge of the glycosylation changes induced by pro-inflammatory cytokines, with a particular focus on cancer and cystic fibrosis, and their consequences on cell interactions and signaling.
Biochemical Journal | 2014
Florent Colomb; Olivier Vidal; Marie Bobowski; Marie-Ange Krzewinski-Recchi; Anne Harduin-Lepers; Eric Mensier; Sophie Jaillard; Jean-Jacques Lafitte; Philippe Delannoy; Sophie Groux-Degroote
We have shown previously that the pro-inflammatory cytokine TNF (tumour necrosis factor) could drive sLe(x) (sialyl-Lewis(x)) biosynthesis through the up-regulation of the BX transcript isoform of the ST3GAL4 (ST3 β-galactoside α-2,3-sialyltransferase 4) sialyltransferase gene in lung epithelial cells and human bronchial mucosa. In the present study, we show that the TNF-induced up-regulation of the ST3GAL4 BX transcript is mediated by MSK1/2 (mitogen- and stress-activated kinase 1/2) through the ERK (extracellular-signal-regulated kinase) and p38 MAPK (mitogen-activated protein kinase) pathways, and increases sLe(x) expression on high-molecular-mass glycoproteins in inflamed airway epithelium. We also show that the TNF-induced sLe(x) expression increases the adhesion of the Pseudomonas aeruginosa PAO1 and PAK strains to lung epithelial cells in a FliD-dependent manner. These results suggest that ERK and p38 MAPK, and the downstream kinase MSK1/2, should be considered as potential targets to hamper inflammation, bronchial mucin glycosylation changes and P. aeruginosa binding in the lung of patients suffering from lung diseases such as chronic bronchitis or cystic fibrosis.
Glycoconjugate Journal | 2010
Sylvain Lehoux; Sophie Groux-Degroote; Aurélie Cazet; Claire-Marie Dhaenens; Claude-Alain Maurage; Marie-Laure Caillet-Boudin; Philippe Delannoy; Marie-Ange Krzewinski-Recchi
The second human β-galactoside α-2,6-sialyltransferase (hST6Gal II) differs from hST6Gal I, the first member of ST6Gal family, in substrate specificity and tissue expression pattern. While ST6GAL1 gene is expressed in almost all human tissues, ST6GAL2 shows a restricted tissue-specific pattern of expression, mostly expressed in embryonic and adult brain. In order to understand the mechanisms involved in the transcriptional regulation of ST6GAL2, we first characterized the transcription start sites (TSS) in SH-SY5Y neuroblastoma cells. 5′ RACE experiments revealed multiple TSS located on three first alternative 5′ exons, termed EX, EY and EZ, which are unusually close on the genomic sequence and are all located more than 42 kbp upstream of the first common coding exon. Using Taqman duplex Q-PCR, we showed that the ST6GAL2 transcripts initiated by EX or EY are mainly expressed in both brain-related cell lines and human cerebral cortex, testifying for the use of a similar transcriptional regulation in vivo. Furthermore, we also showed for the first time hST6Gal II protein expression in the different lobes of the human cortex. Luciferase reporter assays allowed us to define two sequences upstream EX and EY with a high and moderate promoter activity, respectively. Bioinformatics analysis and site-directed mutagenesis showed that NF-κB and NRSF are likely to act as transcriptional repressors, whereas neuronal-related development factors Sox5, Purα and Olf1, are likely to act as transcriptional activators of ST6GAL2. This suggests that ST6GAL2 transcription could be potentially activated for specific neuronal functions.