Sophie Gryseels
University of Antwerp
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sophie Gryseels.
Fems Microbiology Letters | 2010
Koen Vandelannoote; Diana Amissah; Sophie Gryseels; Alfred Dodoo; Shirley Yeboah; Phyllis Addo; Miriam Eddyani; Herwig Leirs; Anthony Ablordey; Françoise Portaels
This study reports the first successful application of real-time PCR for the detection of Mycobacterium ulcerans, the causative agent of Buruli ulcer (BU), in Ghana, a BU-endemic country. Environmental samples and organs of small mammals were analyzed. The real-time PCR assays confirmed the presence of M. ulcerans in a water sample collected in a BU-endemic village in the Ashanti Region.
PLOS Neglected Tropical Diseases | 2012
Sophie Gryseels; Diana Amissah; Koen Vandelannoote; Herwig Leirs; Johan F. De Jonckheere; Manuel T. Silva; Françoise Portaels; Anthony Ablordey; Miriam Eddyani
Background The reservoir and mode of transmission of Mycobacterium ulcerans, the causative agent of Buruli ulcer, remain unknown. Ecological, genetic and epidemiological information nonetheless suggests that M. ulcerans may reside in aquatic protozoa. Methodology/Principal Findings We experimentally infected Acanthamoeba polyphaga with M. ulcerans and found that the bacilli were phagocytised, not digested and remained viable for the duration of the experiment. Furthermore, we collected 13 water, 90 biofilm and 45 detritus samples in both Buruli ulcer endemic and non-endemic communities in Ghana, from which we cultivated amoeboid protozoa and mycobacteria. M. ulcerans was not isolated, but other mycobacteria were as frequently isolated from intracellular as from extracellular sources, suggesting that they commonly infect amoebae in nature. We screened the samples as well as the amoeba cultures for the M. ulcerans markers IS2404, IS2606 and KR-B. IS2404 was detected in 2% of the environmental samples and in 4% of the amoeba cultures. The IS2404 positive amoeba cultures included up to 5 different protozoan species, and originated both from Buruli ulcer endemic and non-endemic communities. Conclusions/Significance This is the first report of experimental infection of amoebae with M. ulcerans and of the detection of the marker IS2404 in amoeba cultures isolated from the environment. We conclude that amoeba are potential natural hosts for M. ulcerans, yet remain sceptical about their implication in the transmission of M. ulcerans to humans and their importance in the epidemiology of Buruli ulcer.
Eurosurveillance | 2015
M. Moreau; C. Spencer; J.G. Gozalbes; Robert Colebunders; A. Lefevre; Sophie Gryseels; Benny Borremans; Stephan Günther; Dirk Becker; Joseph Akoi Bore; Fara Raymond Koundouno; A. Di Caro; Roman Wölfel; Tom Decroo; M Van Herp; Leentje Peetermans; Alseny Modet Camara
We describe two Ebola virus (EBOV) RT-PCR discordant mother-child pairs. In the first, blood from the breastfeeding mother, recovering from EBOV infection, tested negative twice but her urine tested positive. Her child became infected by EBOV and died. In the second, the breastfed child remained EBOV-negative, although the mothers blood tested positive. We highlight possible benefits of EBOV RT-PCR testing in urine and breast milk and the need for hygiene counselling when those fluids are EBOV-positive. .
PLOS Neglected Tropical Diseases | 2014
Nana Ama Amissah; Sophie Gryseels; Nicholas J. Tobias; Bahram Ravadgar; Mitsuko Suzuki; Koen Vandelannoote; Herwig Leirs; Timothy P. Stinear; Françoise Portaels; Anthony Ablordey; Miriam Eddyani
Background The reservoir and mode of transmission of Mycobacterium ulcerans, the causative agent of Buruli ulcer, still remain a mystery. It has been suggested that M. ulcerans persists with difficulty as a free-living organism due to its natural fragility and inability to withstand exposure to direct sunlight, and thus probably persists within a protective host environment. Methodology/Principal Findings We investigated the role of free-living amoebae as a reservoir of M. ulcerans by screening the bacterium in free-living amoebae (FLA) cultures isolated from environmental specimens using real-time PCR. We also followed the survival of M. ulcerans expressing green fluorescence protein (GFP) in Acanthameoba castellanii by flow cytometry and observed the infected cells using confocal and transmission electron microscopy for four weeks in vitro. IS2404 was detected by quantitative PCR in 4.64% of FLA cultures isolated from water, biofilms, detritus and aerosols. While we could not isolate M. ulcerans, 23 other species of mycobacteria were cultivated from inside FLA and/or other phagocytic microorganisms. Laboratory experiments with GFP-expressing M. ulcerans in A. castellani trophozoites for 28 days indicated the bacteria did not replicate inside amoebae, but they could remain viable at low levels in cysts. Transmission electron microscopy of infected A. castellani confirmed the presence of bacteria within both trophozoite vacuoles and cysts. There was no correlation of BU notification rate with detection of the IS2404 in FLA (r = 0.07, n = 539, p = 0.127). Conclusion/Significance This study shows that FLA in the environment are positive for the M. ulcerans insertion sequence IS2404. However, the detection frequency and signal strength of IS2404 positive amoabae was low and no link with the occurrence of BU was observed. We conclude that FLA may host M. ulcerans at low levels in the environment without being directly involved in the transmission to humans.
Vector-borne and Zoonotic Diseases | 2011
Benny Borremans; Herwig Leirs; Sophie Gryseels; Stephan Günther; Rhodes H. Makundi; Joëlle Goüy de Bellocq
The East African Mopeia virus (MOPV) is an arenavirus closely related to the highly pathogenic West African Lassa virus, even sharing the same reservoir rodent host Mastomys natalensis. Because MOPV is not known to cause human disease, it offers a unique alternative for studying Lassa virus transmission. We investigated how habitat, population density, and host characteristics are related to MOPV occurrence in M. natalensis populations in Morogoro, Tanzania. In 3 contrasting habitats, 511 M. natalensis individuals were trapped, 12.1% (58/480 tested individuals) of which tested seropositive for antibodies and 8.4% (41/489 tested individuals) for MOPV-RNA. Although population densities differ among habitats, density and habitat were not significantly correlated to MOPV-RNA or antibody presence. Antibody presence was not significantly correlated with any host characteristics. In contrast, MOPV-RNA presence was inversely related to weight, age, sexual maturity, and body mass index. The model with body mass index as predictor was the best at predicting infection probability. Thirty-five individuals were exclusively MOPV-RNA positive, 52 were exclusively antibody positive, and 6 were both MOPV-RNA and antibody positive. Interpreting these data using experimental infection results from studies on other arenaviruses, this would mean that these infections were very recent, old, and roughly 1-3 weeks after infection, respectively. The higher RNA prevalence in juveniles implies vertical transmission, or that horizontal transmission occurs mainly in this age group due to lack of immunity, higher susceptibility, and/or higher juvenile contact rates. This study demonstrates the strength of combining information on antibody and RNA presence with host characteristics, and how this information can provide valuable insights into transmission dynamics.
Scientific Reports | 2015
Benny Borremans; Raphaël Vossen; Beate Becker-Ziaja; Sophie Gryseels; Nelika K. Hughes; Mats Van Gestel; Natalie Van Houtte; Stephan Günther; Herwig Leirs
Arenaviruses can cause mild to severe hemorrhagic fevers. Humans mainly get infected through contact with infected rodents or their excretions, yet little is known about transmission dynamics within rodent populations. Morogoro virus (MORV) is an Old World arenavirus closely related to Lassa virus with which it shares the same host species Mastomys natalensis. We injected MORV in its host, and sampled blood and excretions at frequent intervals. Infection in adults was acute; viral RNA disappeared from blood after 18 days post infection (dpi) and from excretions after 39 dpi. Antibodies were present from 7 dpi and never disappeared. Neonatally infected animals acquired a chronic infection with RNA and antibodies in blood for at least 3 months. The quantified excretion and antibody patterns can be used to inform mathematical transmission models, and are essential for understanding and controlling transmission in the natural rodent host populations.
European Journal of Protistology | 2012
Johan F. De Jonckheere; Sophie Gryseels; Miriam Eddyani
We have isolated several free-living amoeba strains from the environment in Ghana, which have internal transcribed spacers, including the 5.8S rDNA, sequences similar to sequences attributed to Vahlkampfiidae (Heterolobosea) in databases. However, morphological examination shows that the isolates belong to the Hartmannellidae (Amoebozoa). We provide evidence that the sequences in the databases are wrongly classified as belonging to a genus or species of the Vahlkampfiidae, but rather belong to strains of the genus Hartmannella.
The Journal of Infectious Diseases | 2016
Romy Kerber; Ralf Krumkamp; Boubacar Diallo; Anna Jaeger; Martin Rudolf; Simone Lanini; Joseph Akoi Bore; Fara Raymond Koundouno; Beate Becker-Ziaja; Erna Fleischmann; Kilian Stoecker; Silvia Meschi; Stéphane Mély; Edmund Newman; Fabrizio Carletti; Jasmine Portmann; Miša Korva; Svenja Wolff; Peter Molkenthin; Zoltan Kis; Anne Kelterbaum; Anne Bocquin; Thomas Strecker; Alexandra Fizet; Concetta Castilletti; Gordian Schudt; Lisa J. Ottowell; Andreas Kurth; Barry Atkinson; Marlis Badusche
Background. A unit of the European Mobile Laboratory (EMLab) consortium was deployed to the Ebola virus disease (EVD) treatment unit in Guéckédou, Guinea, from March 2014 through March 2015. Methods. The unit diagnosed EVD and malaria, using the RealStar Filovirus Screen reverse transcription–polymerase chain reaction (RT-PCR) kit and a malaria rapid diagnostic test, respectively. Results. The cleaned EMLab database comprised 4719 samples from 2741 cases of suspected EVD from Guinea. EVD was diagnosed in 1231 of 2178 hospitalized patients (57%) and in 281 of 563 who died in the community (50%). Children aged <15 years had the highest proportion of Ebola virus–malaria parasite coinfections. The case-fatality ratio was high in patients aged <5 years (80%) and those aged >74 years (90%) and low in patients aged 10–19 years (40%). On admission, RT-PCR analysis of blood specimens from patients who died in the hospital yielded a lower median cycle threshold (Ct) than analysis of blood specimens from survivors (18.1 vs 23.2). Individuals who died in the community had a median Ct of 21.5 for throat swabs. Multivariate logistic regression on 1047 data sets revealed that low Ct values, ages of <5 and ≥45 years, and, among children aged 5–14 years, malaria parasite coinfection were independent determinants of a poor EVD outcome. Conclusions. Virus load, age, and malaria parasite coinfection play a role in the outcome of EVD.
PLOS Pathogens | 2017
Sophie Gryseels; Stuart J. E. Baird; Benny Borremans; Rhodes H. Makundi; Herwig Leirs; Joëlle Goüy de Bellocq
Many emerging infections are RNA virus spillovers from animal reservoirs. Reservoir identification is necessary for predicting the geographic extent of infection risk, but rarely are taxonomic levels below the animal species considered as reservoir, and only key circumstances in nature and methodology allow intrinsic virus-host associations to be distinguished from simple geographic (co-)isolation. We sampled and genetically characterized in detail a contact zone of two subtaxa of the rodent Mastomys natalensis in Tanzania. We find two distinct arenaviruses, Gairo and Morogoro virus, each spatially confined to a single M. natalensis subtaxon, only co-occurring at the contact zone’s centre. Inter-subtaxon hybridization at this centre and a continuum of quality habitat for M. natalensis show that both viruses have the ecological opportunity to spread into the other substaxon’s range, but do not, strongly suggesting host-intrinsic barriers. Such barriers could explain why human cases of another M. natalensis-borne arenavirus, Lassa virus, are limited to West Africa.
Ecohealth | 2017
Joachim Mariën; Benny Borremans; Sophie Gryseels; Bram Vanden Broecke; Beate Becker-Ziaja; Rhodes H. Makundi; Apia W. Massawe; Jonas Reijniers; Herwig Leirs
Infectious diseases of wildlife are typically studied using data on antibody and pathogen levels. In order to interpret these data, it is necessary to know the course of antibodies and pathogen levels after infection. Such data are typically collected using experimental infection studies in which host individuals are inoculated in the laboratory and sampled over an extended period, but because laboratory conditions are controlled and much less variable than natural conditions, the immune response and pathogen dynamics may differ. Here, we compared Morogoro arenavirus infection patterns between naturally and experimentally infected multimammate mice (Mastomys natalensis). Longitudinal samples were collected during three months of bi-weekly trapping in Morogoro, Tanzania, and antibody titer and viral RNA presence were determined. The time of infection was estimated from these data using a recently developed Bayesian approach, which allowed us to assess whether the natural temporal patterns match the previously observed patterns in the laboratory. A good match was found for 52% of naturally infected individuals, while most of the mismatches can be explained by the presence of chronically infected individuals (35%), maternal antibodies (10%), and an antibody detection limit (25%). These results suggest that while laboratory data are useful for interpreting field samples, there can still be differences due to conditions that were not tested in the laboratory.