Sophie Haupt
Scottish Crop Research Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sophie Haupt.
The Plant Cell | 2001
Roberto Viola; Alison G. Roberts; Sophie Haupt; Silvia Gazzani; Robert D. Hancock; Nelson Marmiroli; Gordon C. Machray; Karl J. Oparka
Phloem unloading was studied in potato plants in real time during the early stages of tuberization using carboxyfluorescein (CF) as a phloem-mobile tracer, and the unloading pattern was compared with autoradiography of tubers that had transported 14C assimilates. In stolons undergoing extension growth, apoplastic phloem unloading predominated. However, during the first visible signs of tuberization, a transition occurred from apoplastic to symplastic transport, and both CF and 14C assimilates subsequently followed identical patterns of phloem unloading. It is suggested that the switch to symplastic sucrose unloading may be responsible for the upregulation of several genes involved in sucrose metabolism. A detailed analysis of sugar levels and 14C sugar partitioning in tuberizing stolons revealed a distinct difference between the apical region of the tuber and the subapical region. Analysis of invertase activity in nontuberizing and tuberizing stolons revealed a marked decline in soluble invertase in the subapical region of swelling stolons, consistent with the switch from apoplastic to symplastic unloading. However, cell wall–bound invertase activity remained high in the apical 1 to 2 mm of tuberizing stolons. Histochemical analysis of potato lines transformed with the promoter of an apoplastic invertase gene (invGE) linked to a reporter gene also revealed discrete gene expression in the apical bud region. Evidence is presented that the apical and lateral tuber buds function as isolated domains with respect to sucrose unloading and metabolism.
The Plant Cell | 2003
Nieves Medina Escobar; Sophie Haupt; Graham Thow; Petra C. Boevink; Sean Chapman; Karl J. Oparka
A strategy was developed for the high-throughput localization of unknown expressed proteins in Nicotiana benthamiana. Libraries of random, partial cDNAs fused to the 5′ or 3′ end of the gene for green fluorescent protein (GFP) were expressed in planta using a vector based on Tobacco mosaic virus. Viral populations were screened en masse on inoculated leaves using a confocal microscope fitted with water-dipping lenses. Each viral infection site expressed a unique cDNA-GFP fusion, allowing several hundred cDNA-GFP fusions to be screened in a single day. More than half of the members of the library carrying cDNA fusions to the 5′ end of gfp that expressed fluorescent fusion proteins displayed discrete, noncytosolic, subcellular localizations. Nucleotide sequence determination of recovered cDNA sequences and subsequent sequence searches showed that fusions of GFP to proteins that had a predicted subcellular “address” became localized with high fidelity. In a subsequent screen of >20,000 infection foci, 12 fusion proteins were identified that localized to plasmodesmata, a subcellular structure for which very few protein components have been identified. This virus-based system represents a method for high-throughput functional genomic study of plant cell organelles and allows the identification of unique proteins that associate with specific subcompartments within organelles.
The Plant Cell | 2005
Sophie Haupt; Graham H. Cowan; Angelika Ziegler; Alison G. Roberts; Karl J. Oparka; Lesley Torrance
Many plant viruses exploit a conserved group of proteins known as the triple gene block (TGB) for cell-to-cell movement. Here, we investigated the interaction of two TGB proteins (TGB2 and TGB3) of Potato mop-top virus (PMTV), with components of the secretory and endocytic pathways when expressed as N-terminal fusions to green fluorescent protein or monomeric red fluorescent protein (mRFP). Our studies revealed that fluorophore-labeled TGB2 and TGB3 showed an early association with the endoplasmic reticulum (ER) and colocalized in motile granules that used the ER-actin network for intracellular movement. Both proteins increased the size exclusion limit of plasmodesmata, and TGB3 accumulated at plasmodesmata in the absence of TGB2. TGB3 contains a putative Tyr-based sorting motif, mutations in which abolished ER localization and plasmodesmatal targeting. Later in the expression cycle, both fusion proteins were incorporated into vesicular structures. TGB2 associated with these structures on its own, but TGB3 could not be incorporated into the vesicles in the absence of TGB2. Moreover, in addition to localization to the ER and motile granules, mRFP-TGB3 was incorporated into vesicles when expressed in PMTV-infected epidermal cells, indicating recruitment by virus-expressed TGB2. The TGB fusion protein-containing vesicles were labeled with FM4-64, a marker for plasma membrane internalization and components of the endocytic pathway. TGB2 also colocalized in vesicles with Ara7, a Rab5 ortholog that marks the early endosome. Protein interaction analysis revealed that recombinant TGB2 interacted with a tobacco protein belonging to the highly conserved RME-8 family of J-domain chaperones, shown to be essential for endocytic trafficking in Caenorhabditis elegans and Drosophila melanogaster. Collectively, the data indicate the involvement of the endocytic pathway in viral intracellular movement, the implications of which are discussed.
The Plant Cell | 2002
Trudi Gillespie; Petra C. Boevink; Sophie Haupt; Alison G. Roberts; Rachel L. Toth; Tracy A. Valentine; Sean Chapman; Karl J. Oparka
Microtubules interact strongly with the viral movement protein (MP) of Tobacco mosaic virus (TMV) and are thought to transport the viral genome between plant cells. We describe a functionally enhanced DNA-shuffled movement protein (MPR3) that remained bound to the vertices of the cortical endoplasmic reticulum, showing limited affinity for microtubules. A single amino acid change was shown to confer the MPR3 phenotype. Disruption of the microtubule cytoskeleton in situ with pharmacological agents, or by silencing of the α-tubulin gene, had no significant effect on the spread of TMV vectors expressing wild-type MP (MPWT) and did not prevent the accumulation of MPWT in plasmodesmata. Thus, cell-to-cell trafficking of TMV can occur independently of microtubules. The MPR3 phenotype was reproduced when infection sites expressing MPWT were treated with a specific proteasome inhibitor, indicating that the degradation of MPR3 is impaired. We suggest that the improved viral transport functions of MPR3 arise from evasion of a host degradation pathway.
The EMBO Journal | 2007
Sang Hyon Kim; Eugene V. Ryabov; Natalia O. Kalinina; Daria V. Rakitina; Trudi Gillespie; Stuart A. MacFarlane; Sophie Haupt; John W. S. Brown; Michael Taliansky
The nucleolus and Cajal bodies (CBs) are prominent interacting subnuclear domains involved in a number of crucial aspects of cell function. Certain viruses interact with these compartments but the functions of such interactions are largely uncharacterized. Here, we show that the ability of the groundnut rosette virus open reading frame (ORF) 3 protein to move viral RNA long distances through the phloem strictly depends on its interaction with CBs and the nucleolus. The ORF3 protein targets and reorganizes CBs into multiple CB‐like structures and then enters the nucleolus by causing fusion of these structures with the nucleolus. The nucleolar localization of the ORF3 protein is essential for subsequent formation of viral ribonucleoprotein (RNP) particles capable of virus long‐distance movement and systemic infection. We provide a model whereby the ORF3 protein utilizes trafficking pathways involving CBs to enter the nucleolus and, along with fibrillarin, exit the nucleus to form viral ‘transport‐competent’ RNP particles in the cytoplasm.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Sang Hyon Kim; Stuart A. MacFarlane; Natalia O. Kalinina; Daria V. Rakitina; Eugene V. Ryabov; Trudi Gillespie; Sophie Haupt; John W. S. Brown; Michael Taliansky
The nucleolus and specific nucleolar proteins are involved in the life cycles of some plant and animal viruses, but the functions of these proteins and of nucleolar trafficking in virus infections are largely unknown. The ORF3 protein of the plant virus, groundnut rosette virus (an umbravirus), has been shown to cycle through the nucleus, passing through Cajal bodies to the nucleolus and then exiting back into the cytoplasm. This journey is absolutely required for the formation of viral ribonucleoprotein particles (RNPs) that, themselves, are essential for the spread of the virus to noninoculated leaves of the shoot tip. Here, we show that these processes rely on the interaction of the ORF3 protein with fibrillarin, a major nucleolar protein. Silencing of the fibrillarin gene prevents long-distance movement of groundnut rosette virus but does not affect viral replication or cell-to-cell movement. Repressing fibrillarin production also localizes the ORF3 protein to multiple Cajal body-like aggregates that fail to fuse with the nucleolus. Umbraviral ORF3 protein and fibrillarin interact in vitro and, when mixed with umbravirus RNA, form an RNP complex. This complex has a filamentous structure with some regular helical features, resembling the RNP complex formed in vivo during umbravirus infection. The filaments formed in vitro are infectious when inoculated to plants, and their infectivity is resistant to RNase. These results demonstrate previously undescribed functions for fibrillarin as an essential component of translocatable viral RNPs and may have implications for other plant and animal viruses that interact with the nucleolus.
BMC Plant Biology | 2004
Luigi Tedone; Robert D. Hancock; Salvatore Alberino; Sophie Haupt; Roberto Viola
BackgroundFollowing on from recent advances in plant AsA biosynthesis there is increasing interest in elucidating the factors contributing to the L-ascorbic acid (AsA) content of edible crops. One main objective is to establish whether in sink organs such as fruits and tubers, AsA is synthesised in situ from imported photoassimilates or synthesised in source tissues and translocated via the phloem. In the current work we test the hypothesis that long-distance transport is involved in AsA accumulation within the potato tuber, the most significant source of AsA in the European diet.ResultsUsing the EDTA exudation technique we confirm the presence of AsA in the phloem of potato plants and demonstrate a correlation between changes in the AsA content of source leaves and that of phloem exudates. Comparison of carboxyflourescein and AgNO3 staining is suggestive of symplastic unloading of AsA in developing tubers. This hypothesis was further supported by the changes in AsA distribution during tuber development which closely resembled those of imported photoassimilates. Manipulation of leaf AsA content by supply of precursors to source leaves resulted in increased AsA content of developing tubers.ConclusionOur data provide strong support to the hypothesis that long-distance transport of AsA occurs in potato. We also show that phloem AsA content and AsA accumulation in sink organs can be directly increased via manipulation of AsA content in the foliage. We are now attempting to establish the quantitative contribution of imported AsA to overall AsA accumulation in developing potato tubers via transgenic approaches.
BMC Plant Biology | 2003
Robert D. Hancock; Diane McRae; Sophie Haupt; Roberto Viola
BackgroundAlthough plants are the main source of vitamin C in the human diet, we still have a limited understanding of how plants synthesise L-ascorbic acid (AsA) and what regulates its concentration in different plant tissues. In particular, the enormous variability in the vitamin C content of storage organs from different plants remains unexplained. Possible sources of AsA in plant storage organs include in situ synthesis and long-distance transport of AsA synthesised in other tissues via the phloem. In this paper we examine a third possibility, that of synthesis within the phloem.ResultsWe provide evidence for the presence of AsA in the phloem sap of a wide range of crop species using aphid stylectomy and histochemical approaches. The activity of almost all the enzymes of the primary AsA biosynthetic pathway were detected in phloem-rich vascular exudates from Cucurbita pepo fruits and AsA biosynthesis was demonstrated in isolated phloem strands from Apium graveolens petioles incubated with a range of precursors (D-glucose, D-mannose, L-galactose and L-galactono-1,4-lactone). Phloem uptake of D-[U-14C]mannose and L-[1-14C]galactose (intermediates of the AsA biosynthetic pathway) as well as L-[1-14C]AsA and L-[1-14C]DHA, was observed in Nicotiana benthamiana leaf discs.ConclusionsWe present the novel finding that active AsA biosynthesis occurs in the phloem. This process must now be considered in the context of mechanisms implicated in whole plant AsA distribution. This work should provoke studies aimed at elucidation of the in vivo substrates for phloem AsA biosynthesis and its contribution to AsA accumulation in plant storage organs.
Methods of Molecular Biology | 2008
Sophie Haupt; Angelika Ziegler; Lesley Torrance
This chapter describes techniques for in vivo imaging of fluorescent fusion proteins in living cells by confocal laser scanning microscopy (CLSM). Methods are provided for (i) producing the constructs for transient expression from plasmids or virus-based vectors, (ii) introduction of constructs to plant epidermal cells; (iii) imaging of the expressed proteins by CLSM and image processing, and (iv) studying the expression in the presence of agents that affect the integrity or function of cytoskeletal elements. Notes are provided to aid comprehension and indicate problems.
Methods of Molecular Biology | 2009
Sophie Haupt; Angelika Ziegler; Graham Cowan; Lesley Torrance
This chapter describes techniques to investigate the localisation and function of virus-encoded proteins in plants using green fluorescent protein (GFP) transiently expressed from plasmids or infectious cDNA reporter clones of barley stripe mosaic virus. Virus movement and the localisation of GFP-tagged proteins in living cells were monitored by confocal laser scanning microscopy (CLSM). In addition, GFP expression was imaged in transgenic plants where specific organelles or subcellular structures such as endoplasmic reticulum were labelled with another fluorophore (e.g., monomeric red fluorescent protein). Using these approaches we discovered evidence for additional roles played by virus encoded movement protein TGB2 and gammab protein in virus replication. Methods are described for clone construction and mutagenesis, and for transient expression (biolistic bombardment or agrobacterium infiltration) in the epidermal cells of Nicotiana benthamiana or barley. In addition, techniques for chloroplast isolation and imaging of the different fluorescent proteins, and the avoidance of interference from autofluorescence, are described.