Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sophie Hubert is active.

Publication


Featured researches published by Sophie Hubert.


Proceedings of the Royal Society of London. Series B, Biological Sciences | 2010

Parallel adaptive evolution of Atlantic cod on both sides of the Atlantic Ocean in response to temperature

Ian R. Bradbury; Sophie Hubert; Brent Higgins; Tudor Borza; Sharen Bowman; Ian G. Paterson; Paul V. R. Snelgrove; Corey J. Morris; Robert S. Gregory; David C. Hardie; Jeffrey A. Hutchings; Daniel E. Ruzzante; Christopher T. Taggart; Paul Bentzen

Despite the enormous economic and ecological importance of marine organisms, the spatial scales of adaptation and biocomplexity remain largely unknown. Yet, the preservation of local stocks that possess adaptive diversity is critical to the long-term maintenance of productive stable fisheries and ecosystems. Here, we document genomic evidence of range-wide adaptive differentiation in a broadcast spawning marine fish, Atlantic cod (Gadus morhua), using a genome survey of single nucleotide polymorphisms. Of 1641 gene-associated polymorphisms examined, 70 (4.2%) tested positive for signatures of selection using a Bayesian approach. We identify a subset of these loci (n = 40) for which allele frequencies show parallel temperature-associated clines (p < 0.001, r2 = 0.89) in the eastern and western north Atlantic. Temperature associations were robust to the statistical removal of geographic distance or latitude effects, and contrasted ‘neutral’ loci, which displayed no temperature association. Allele frequencies at temperature-associated loci were significantly correlated, spanned three linkage groups and several were successfully annotated supporting the involvement of multiple independent genes. Our results are consistent with the evolution and/or selective sweep of multiple genes in response to ocean temperature, and support the possibility of a new conservation paradigm for non-model marine organisms based on genomic approaches to resolving functional and adaptive diversity.


BMC Genomics | 2010

Development of a SNP resource and a genetic linkage map for Atlantic cod (Gadus morhua)

Sophie Hubert; Brent Higgins; Tudor Borza; Sharen Bowman

BackgroundAtlantic cod (Gadus morhua) is a species with increasing economic significance for the aquaculture industry. The genetic improvement of cod will play a critical role in achieving successful large-scale aquaculture. While many microsatellite markers have been developed in cod, the number of single nucleotide polymorphisms (SNPs) is currently limited. Here we report the identification of SNPs from sequence data generated by a large-scale expressed sequence tag (EST) program, focusing on fish originating from Canadian waters.ResultsA total of 97976 ESTs were assembled to generate 13448 contigs. We detected 4753 SNPs that met our selection criteria (depth of coverage ≥ 4 reads; minor allele frequency > 25%). 3072 SNPs were selected for testing. The percentage of successful assays was 75%, with 2291 SNPs amplifying correctly. Of these, 607 (26%) SNPs were monomorphic for all populations tested. In total, 64 (4%) of SNPs are likely to represent duplicated genes or highly similar members of gene families, rather than alternative alleles of the same gene, since they showed a high frequency of heterozygosity. The remaining polymorphic SNPs (1620) were categorised as validated SNPs. The mean minor allele frequency of the validated loci was 0.258 (± 0.141). Of the 1514 contigs from which validated SNPs were selected, 31% have a significant blast hit. For the SNPs predicted to occur in coding regions (141), we determined that 36% (51) are non-synonymous. Many loci (1033 SNPs; 64%) are polymorphic in all populations tested. However a small number of SNPs (184) that are polymorphic in the Western Atlantic were monomorphic in fish tested from three European populations. A preliminary linkage map has been constructed with 23 major linkage groups and 924 mapped SNPs.ConclusionsThese SNPs represent powerful tools to accelerate the genetic improvement of cod aquaculture. They have been used to build a genetic linkage map that can be applied to quantitative trait locus (QTL) discovery. Since these SNPs were generated from ESTs, they are linked to specific genes. Genes that map within QTL intervals can be prioritized for testing to determine whether they contribute to observed phenotypes.


Evolutionary Applications | 2013

Genomic islands of divergence and their consequences for the resolution of spatial structure in an exploited marine fish

Ian R. Bradbury; Sophie Hubert; Brent Higgins; Sharen Bowman; Tudor Borza; Ian G. Paterson; Paul V. R. Snelgrove; Corey J. Morris; Robert S. Gregory; David C. Hardie; Jeffrey A. Hutchings; Daniel E. Ruzzante; Christopher T. Taggart; Paul Bentzen

As populations diverge, genomic regions associated with adaptation display elevated differentiation. These genomic islands of adaptive divergence can inform conservation efforts in exploited species, by refining the delineation of management units, and providing genomic tools for more precise and effective population monitoring and the successful assignment of individuals and products. We explored heterogeneity in genomic divergence and its impact on the resolution of spatial population structure in exploited populations of Atlantic cod, Gadus morhua, using genome wide expressed sequence derived single nucleotide polymorphisms in 466 individuals sampled across the range. Outlier tests identified elevated divergence at 5.2% of SNPs, consistent with directional selection in one‐third of linkage groups. Genomic regions of elevated divergence ranged in size from a single position to several cM. Structuring at neutral loci was associated with geographic features, whereas outlier SNPs revealed genetic discontinuities in both the eastern and western Atlantic. This fine‐scale geographic differentiation enhanced assignment to region of origin, and through the identification of adaptive diversity, fundamentally changes how these populations should be conserved. This work demonstrates the utility of genome scans for adaptive divergence in the delineation of stock structure, the traceability of individuals and products, and ultimately a role for population genomics in fisheries conservation.


Developmental and Comparative Immunology | 2008

Functional genomic analysis of the response of Atlantic cod (Gadus morhua) spleen to the viral mimic polyriboinosinic polyribocytidylic acid (pIC).

Matthew L. Rise; Jennifer R. Hall; Marlies Rise; Tiago S. Hori; A. Kurt Gamperl; Jennifer Kimball; Sophie Hubert; Sharen Bowman; Stewart C. Johnson

In order to improve our understanding of how Atlantic cod (Gadus morhua) respond to viruses, we characterized immune-related gene expression in spleen tissues following stimulation with a synthetic double-stranded RNA polyriboinosinic polyribocytidylic acid (pIC). We used reciprocal suppression subtractive hybridization (SSH) cDNA libraries and quantitative RTPCR (QPCR) to identify and quantify pIC-responsive transcripts. A total of 3874 expressed sequence tags (ESTs) were generated from SSH libraries enriched for genes responsive to pIC. Thirteen immune-relevant genes from the libraries were subjected to QPCR. Genes confirmed as up-regulated by pIC included interferon stimulated gene 15, a small inducible cytokine, interferon regulatory factors (1, 7, and 10), MHC class I, viperin, and ATP-dependent helicase LGP2. Alpha-1-microglobulin (bikunin) was down-regulated, suggesting that pIC may suppress the acute phase response. Since the SSH libraries built for this study identified genes involved in the antiviral response, they are important resources for studying the responses of Atlantic cod to viruses. Evidence is provided for the existence of a RIG-I-like RNA helicase viral recognition pathway in Atlantic cod. Taken together, our data show that Atlantic cod can recognize double-stranded RNA and mount a rapid and potent interferon pathway response that is similar to that observed in other fish species and higher vertebrates.


Physiological Genomics | 2009

Identification and analysis of differentially expressed genes in immune tissues of Atlantic cod stimulated with formalin-killed, atypical Aeromonas salmonicida

Charles Y. Feng; Stewart C. Johnson; Tiago S. Hori; Marlies Rise; Jennifer R. Hall; A. Kurt Gamperl; Sophie Hubert; Jennifer Kimball; Sharen Bowman; Matthew L. Rise

Physiological changes, elicited in animal immune tissues by exposure to pathogens, may be studied using functional genomics approaches. We created and characterized reciprocal suppression subtractive hybridization (SSH) cDNA libraries to identify differentially expressed genes in spleen and head kidney tissues of Atlantic cod (Gadus morhua) challenged with intraperitoneal injections of formalin-killed, atypical Aeromonas salmonicida. Of 4,154 ESTs from four cDNA libraries, 10 genes with immune-relevant functional annotations were selected for QPCR studies using individual fish templates to assess biological variability. Genes confirmed by QPCR as upregulated by A. salmonicida included interleukin-1 beta, interleukin-8, a small inducible cytokine, interferon regulatory factor 1 (IRF1), ferritin heavy subunit, cathelicidin, and hepcidin. This study is the first large-scale discovery of bacteria-responsive genes in cod and the first to demonstrate upregulation of IRF1 in fish immune tissues as a result of bacterial antigen stimulation. Given the importance of IRF1 in vertebrate immune responses to viral and bacterial pathogens, the full-length cDNA sequence of Atlantic cod IRF1 was obtained and compared with putative orthologous sequences from other organisms. Functional annotations of assembled SSH library ESTs showed that bacterial antigen stimulation caused changes in many biological processes including chemotaxis, regulation of apoptosis, antimicrobial peptide production, and iron homeostasis. Moreover, differences in spleen and head kidney gene expression responses to the bacterial antigens pointed to a potential role for the cod spleen in blood-borne pathogen clearance. Our data show that Atlantic cod immune tissue responses to bacterial antigens are similar to those seen in other fish species and higher vertebrates.


Marine Biotechnology | 2011

An Integrated Approach to Gene Discovery and Marker Development in Atlantic Cod (Gadus morhua)

Sharen Bowman; Sophie Hubert; Brent Higgins; Cynthia Stone; Jennifer Kimball; Tudor Borza; Jillian Tarrant Bussey; Gary Simpson; Catherine Kozera; Bruce A. Curtis; Jennifer R. Hall; Tiago S. Hori; Charles Y. Feng; Marlies Rise; Marije Booman; A. Kurt Gamperl; Edward A. Trippel; Jane E. Symonds; Stewart C. Johnson; Matthew L. Rise

Atlantic cod is a species that has been overexploited by the capture fishery. Programs to domesticate this species are underway in several countries, including Canada, to provide an alternative route for production. Selective breeding programs have been successfully applied in the domestication of other species, with genomics-based approaches used to augment conventional methods of animal production in recent years. Genomics tools, such as gene sequences and sets of variable markers, also have the potential to enhance and accelerate selective breeding programs in aquaculture, and to provide better monitoring tools to ensure that wild cod populations are well managed. We describe the generation of significant genomics resources for Atlantic cod through an integrated genomics/selective breeding approach. These include 158,877 expressed sequence tags (ESTs), a set of annotated putative transcripts and several thousand single nucleotide polymorphism markers that were developed from, and have been shown to be highly variable in, fish enrolled in two selective breeding programs. Our EST collection was generated from various tissues and life cycle stages. In some cases, tissues from which libraries were generated were isolated from fish exposed to stressors, including elevated temperature, or antigen stimulation (bacterial and viral) to enrich for transcripts that are involved in these response pathways. The genomics resources described here support the developing aquaculture industry, enabling the application of molecular markers within selective breeding programs. Marker sets should also find widespread application in fisheries management.


Physiological Genomics | 2010

Impact of asymptomatic nodavirus carrier state and intraperitoneal viral mimic injection on brain transcript expression in Atlantic cod (Gadus morhua)

Matthew L. Rise; Jennifer R. Hall; Marlies Rise; Tiago S. Hori; Mitchell J. Browne; A. Kurt Gamperl; Sophie Hubert; Jennifer Kimball; Sharen Bowman; Stewart C. Johnson

Nodaviruses and other RNA viruses have a profoundly negative impact on the global aquaculture industry. Nodaviruses target nervous tissue causing viral nervous necrosis, a disease characterized by neurological damage, swimming abnormalities, and morbidity. This study used functional genomic techniques to study the Atlantic cod (Gadus morhua) brain transcript expression responses to asymptomatic high nodavirus carrier state and intraperitoneal injection of polyriboinosinic polyribocytidylic acid (pIC). Reciprocal suppression subtractive hybridization (SSH) cDNA libraries enriched for virus-responsive brain transcripts were constructed and characterized. We generated 1,938 expressed sequence tags (ESTs) from a forward brain SSH library (enriched for transcripts upregulated by nodavirus and/or pIC) and 1,980 ESTs from a reverse brain SSH library (enriched for transcripts downregulated by nodavirus and/or pIC). To examine the effect of nodavirus carrier state on individual brain gene expression in asymptomatic cod, 27 transcripts of interest were selected for quantitative reverse transcription-polymerase chain reaction (QPCR) studies. Transcripts found to be >10-fold upregulated in individuals with a high nodavirus carrier state relative to those in a no/low nodavirus carrier state were identified as ISG15, IL8, DHX58 (alias LGP2), ZNFX1, RSAD2 (alias viperin), and SACS (sacsin, alias spastic ataxia of Charlevoix-Saguenay). These and other SSH-identified transcripts were also found by QPCR to be significantly (P < 0.05) upregulated by pIC compared with saline-injected controls within 72 h of injection. Several transcripts identified in the reverse SSH library, including two putative ubiquitination pathway members (HERC4 and SUMO2), were found to be significantly (P < 0.05) downregulated in individuals with a high nodavirus carrier state. Our data shows that Atlantic cod brains have a strong interferon pathway response to asymptomatic high nodavirus carrier state and that many interferon pathway and other immune relevant transcripts are significantly induced in brain by both nodavirus and pIC.


Marine Biotechnology | 2011

Development and Experimental Validation of a 20K Atlantic Cod (Gadus morhua) Oligonucleotide Microarray Based on a Collection of over 150,000 ESTs

Marije Booman; Tudor Borza; Charles Y. Feng; Tiago S. Hori; Brent Higgins; Adrian S. Culf; Daniel Léger; Ian C. Chute; Anissa Belkaid; Marlies Rise; A. Kurt Gamperl; Sophie Hubert; Jennifer Kimball; Rodney J. Ouellette; Stewart C. Johnson; Sharen Bowman; Matthew L. Rise

The collapse of Atlantic cod (Gadus morhua) wild populations strongly impacted the Atlantic cod fishery and led to the development of cod aquaculture. In order to improve aquaculture and broodstock quality, we need to gain knowledge of genes and pathways involved in Atlantic cod responses to pathogens and other stressors. The Atlantic Cod Genomics and Broodstock Development Project has generated over 150,000 expressed sequence tags from 42 cDNA libraries representing various tissues, developmental stages, and stimuli. We used this resource to develop an Atlantic cod oligonucleotide microarray containing 20,000 unique probes. Selection of sequences from the full range of cDNA libraries enables application of the microarray for a broad spectrum of Atlantic cod functional genomics studies. We included sequences that were highly abundant in suppression subtractive hybridization (SSH) libraries, which were enriched for transcripts responsive to pathogens or other stressors. These sequences represent genes that potentially play an important role in stress and/or immune responses, making the microarray particularly useful for studies of Atlantic cod gene expression responses to immune stimuli and other stressors. To demonstrate its value, we used the microarray to analyze the Atlantic cod spleen response to stimulation with formalin-killed, atypical Aeromonas salmonicida, resulting in a gene expression profile that indicates a strong innate immune response. These results were further validated by quantitative PCR analysis and comparison to results from previous analysis of an SSH library. This study shows that the Atlantic cod 20K oligonucleotide microarray is a valuable new tool for Atlantic cod functional genomics research.


Molecular Ecology Resources | 2011

Evaluating SNP ascertainment bias and its impact on population assignment in Atlantic cod, Gadus morhua.

Ian R. Bradbury; Sophie Hubert; Brent Higgins; Sharen Bowman; Ian G. Paterson; Paul V. R. Snelgrove; Corey J. Morris; Robert S. Gregory; David C. Hardie; Tudor Borza; Paul Bentzen

The increasing use of single nucleotide polymorphisms (SNPs) in studies of nonmodel organisms accentuates the need to evaluate the influence of ascertainment bias on accurate ecological or evolutionary inference. Using a panel of 1641 expressed sequence tag–derived SNPs developed for northwest Atlantic cod (Gadus morhua), we examined the influence of ascertainment bias and its potential impact on assignment of individuals to populations ranging widely in origin. We hypothesized that reductions in assignment success would be associated with lower diversity in geographical regions outside the location of ascertainment. Individuals were genotyped from 13 locations spanning much of the contemporary range of Atlantic cod. Diversity, measured as average sample heterozygosity and number of polymorphic loci, declined (c. 30%) from the western (He = 0.36) to eastern (He = 0.25) Atlantic, consistent with a signal of ascertainment bias. Assignment success was examined separately for pools of loci representing differing degrees of reductions in diversity. SNPs displaying the largest declines in diversity produced the most accurate assignment in the ascertainment region (c. 83%) and the lowest levels of correct assignment outside the ascertainment region (c. 31%). Interestingly, several isolated locations showed no effect of assignment bias and consistently displayed 100% correct assignment. Contrary to expectations, estimates of accurate assignment range‐wide using all loci displayed remarkable similarity despite reductions in diversity. Our results support the use of large SNP panels in assignment studies of high geneflow marine species. However, our evidence of significant reductions in assignment success using some pools of loci suggests that ascertainment bias may influence assignment results and should be evaluated in large‐scale assignment studies.


Molecular Ecology Resources | 2009

Characterization of 155 EST-derived microsatellites from Atlantic cod (Gadus morhua) and validation for linkage mapping.

Brent Higgins; Sophie Hubert; Gary Simpson; Cynthia Stone; Sharen Bowman

Microsatellite markers for Atlantic cod (Gadus morhua) were identified from a collection of 30 630 expressed sequence tags. Primers were designed for 395 microsatellites and 155 were successfully amplified. Allele number varied from 1 to 26 (average 6.34). Average observed and expected heterozygosities were 0.50 and 0.54, respectively. A subset of 105 microsatellites tested for Mendelian segregation showed no significant distortion of segregation when correcting for multiple tests. Null alleles were detected at four loci. Significant blastx matches were found for 23 loci. These microsatellites will be used to create a linkage map to enhance genetic selection in commercial cod breeding.

Collaboration


Dive into the Sophie Hubert's collaboration.

Top Co-Authors

Avatar

Matthew L. Rise

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar

Stewart C. Johnson

Fisheries and Oceans Canada

View shared research outputs
Top Co-Authors

Avatar

Tiago S. Hori

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Kurt Gamperl

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marlies Rise

Memorial University of Newfoundland

View shared research outputs
Researchain Logo
Decentralizing Knowledge