Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tiago S. Hori is active.

Publication


Featured researches published by Tiago S. Hori.


Developmental and Comparative Immunology | 2008

Functional genomic analysis of the response of Atlantic cod (Gadus morhua) spleen to the viral mimic polyriboinosinic polyribocytidylic acid (pIC).

Matthew L. Rise; Jennifer R. Hall; Marlies Rise; Tiago S. Hori; A. Kurt Gamperl; Jennifer Kimball; Sophie Hubert; Sharen Bowman; Stewart C. Johnson

In order to improve our understanding of how Atlantic cod (Gadus morhua) respond to viruses, we characterized immune-related gene expression in spleen tissues following stimulation with a synthetic double-stranded RNA polyriboinosinic polyribocytidylic acid (pIC). We used reciprocal suppression subtractive hybridization (SSH) cDNA libraries and quantitative RTPCR (QPCR) to identify and quantify pIC-responsive transcripts. A total of 3874 expressed sequence tags (ESTs) were generated from SSH libraries enriched for genes responsive to pIC. Thirteen immune-relevant genes from the libraries were subjected to QPCR. Genes confirmed as up-regulated by pIC included interferon stimulated gene 15, a small inducible cytokine, interferon regulatory factors (1, 7, and 10), MHC class I, viperin, and ATP-dependent helicase LGP2. Alpha-1-microglobulin (bikunin) was down-regulated, suggesting that pIC may suppress the acute phase response. Since the SSH libraries built for this study identified genes involved in the antiviral response, they are important resources for studying the responses of Atlantic cod to viruses. Evidence is provided for the existence of a RIG-I-like RNA helicase viral recognition pathway in Atlantic cod. Taken together, our data show that Atlantic cod can recognize double-stranded RNA and mount a rapid and potent interferon pathway response that is similar to that observed in other fish species and higher vertebrates.


Physiological Genomics | 2009

Identification and analysis of differentially expressed genes in immune tissues of Atlantic cod stimulated with formalin-killed, atypical Aeromonas salmonicida

Charles Y. Feng; Stewart C. Johnson; Tiago S. Hori; Marlies Rise; Jennifer R. Hall; A. Kurt Gamperl; Sophie Hubert; Jennifer Kimball; Sharen Bowman; Matthew L. Rise

Physiological changes, elicited in animal immune tissues by exposure to pathogens, may be studied using functional genomics approaches. We created and characterized reciprocal suppression subtractive hybridization (SSH) cDNA libraries to identify differentially expressed genes in spleen and head kidney tissues of Atlantic cod (Gadus morhua) challenged with intraperitoneal injections of formalin-killed, atypical Aeromonas salmonicida. Of 4,154 ESTs from four cDNA libraries, 10 genes with immune-relevant functional annotations were selected for QPCR studies using individual fish templates to assess biological variability. Genes confirmed by QPCR as upregulated by A. salmonicida included interleukin-1 beta, interleukin-8, a small inducible cytokine, interferon regulatory factor 1 (IRF1), ferritin heavy subunit, cathelicidin, and hepcidin. This study is the first large-scale discovery of bacteria-responsive genes in cod and the first to demonstrate upregulation of IRF1 in fish immune tissues as a result of bacterial antigen stimulation. Given the importance of IRF1 in vertebrate immune responses to viral and bacterial pathogens, the full-length cDNA sequence of Atlantic cod IRF1 was obtained and compared with putative orthologous sequences from other organisms. Functional annotations of assembled SSH library ESTs showed that bacterial antigen stimulation caused changes in many biological processes including chemotaxis, regulation of apoptosis, antimicrobial peptide production, and iron homeostasis. Moreover, differences in spleen and head kidney gene expression responses to the bacterial antigens pointed to a potential role for the cod spleen in blood-borne pathogen clearance. Our data show that Atlantic cod immune tissue responses to bacterial antigens are similar to those seen in other fish species and higher vertebrates.


Physiological Genomics | 2010

Transcriptome responses to heat stress in the nucleated red blood cells of the rainbow trout (Oncorhynchus mykiss)

Johanne M. Lewis; Tiago S. Hori; Matthew L. Rise; Patrick J. Walsh; Suzanne Currie

The retention of a nucleus in the mature state of fish red blood cells (RBCs) and the ability to easily collect and manipulate blood in nonterminal experiments make blood an ideal tissue on which to study the cellular stress response in fish. Through the use of the cGRASP 16K salmonid microarray, we investigated differences in RBC global gene transcription in fish held under control conditions (11 degrees C) and exposed to heat stress (1 h at 25 degrees C followed by recovery at 11 degrees C). Repeated blood sampling (via a dorsal aorta cannula) enables us to examine the individual stress response over time. Samples were taken preheat stress (representing individual control) and at 4 and 24 h postheat stress (representing early and late transcriptional regulation). Approximately 3,000 microarray features had signal above threshold when hybridized with RBC RNA-derived targets, and cannulation did not have a detectable effect on RBC mRNA expression at the investigated time points. Genes involved in the stress response, immune response, and apoptosis were among those showing the highest dysregulation during both early and late transcriptional regulation. Additionally, genes related to the differentiation and development of blood cells were transcriptionally upregulated at the 24 h time point. This study provides a broader understanding of the mechanisms underpinning the stress response in fish and the discovery of novel genes that are regulated in a stress specific manner. Moreover, salmonid transcripts that are consistently dysregulated in blood in response to heat stress are potential candidates of nonlethal biomarkers of exposure to this particular stressor.


Molecular Immunology | 2009

Infectious salmon anaemia virus (ISAV) isolates induce distinct gene expression responses in the Atlantic salmon (Salmo salar) macrophage/dendritic-like cell line TO, assessed using genomic techniques

Samuel T. Workenhe; Tiago S. Hori; Matthew L. Rise; Molly J. T. Kibenge; Frederick S. B. Kibenge

Infectious salmon anaemia virus (ISAV) is a marine orthomyxovirus of significant interest not only as a cause of a fatal disease of farmed Atlantic salmon resulting in severe economic losses to the aquaculture industry, but also as the only poikilothermic orthomyxovirus. ISAV targets vascular endothelial cells and macrophages, and is known to influence the expression of both innate and adaptive immune response relevant genes. ISAV isolates from different geographic regions have been shown to vary considerably in their pathogenicity for Atlantic salmon. This study aimed to characterize the Atlantic salmon TO macrophage/dendritic-like cell responses to infection with a selection of ISAV isolates of different genotypes and pathogenicity phenotypes. The first TO infection trial used ISAV isolates NBISA01 and RPC/NB-04-085-1 of high and low pathogenicity, respectively, and global gene expression analyses were carried out using approximately 16,000 gene (16K) salmonid cDNA microarrays to compare RNA samples extracted from TO cells harvested 24 and 72h post-infection versus time-matched uninfected controls. Overall, the microarray experiment showed that RPC/NB-04-085-1-infected cells had a higher total number of reproducibly dysregulated genes (88 genes: the sum of genes greater than 2-fold up- or down-regulated in all four replicate microarrays of a given comparison) than the NBISA01-infected cells (10 genes) for the combined sampling points (i.e. 24 and 72h). This microarray experiment identified several salmon genes that were differentially regulated by NBISA01 and RPC/NB-04-085-1, and which may be useful as molecular biomarkers of ISAV infection. An initial quantitative reverse transcription-polymerase chain reaction (QRT-PCR) study involving 25 microarray-identified genes confirmed the differences in the level of dysregulation of host transcripts between the two ISAV isolates (i.e. NBISA01 and RPC/NB-04-085-1). A second TO infection trial was run using a selection of four clinical ISAV isolates (Norway-810/9/99, a high pathogenicity isolate of European genotype; RPC/NB-04-085-1, a low pathogenicity isolate of European genotype; NBISA01, a high pathogenicity isolate of North American genotype; and RPC/NB-01-0593-1, an intermediate pathogenicity isolate of North American genotype), and UV-inactivated RPC/NB-04-085-1, with sampling at 24, 36, 48, 72, 96, and 120h post-infection. The microarray-identified, QRT-PCR validated suite of 24 molecular biomarkers of response to ISAV were used in a second QRT-PCR experiment to assess the TO cell gene expression responses to the four ISAV isolates at all six time points in the infection. The QRT-PCR data showed that RPC/NB-04-085-1 caused the highest fold changes of most immune-relevant genes [such as interferon-inducible protein Gig1, Mx1 protein, interferon-induced protein with tetratricopeptide repeats 5, Radical S-adenosyl methionine domain-containing protein (viperin), and several genes involved in the ISGylation pathway], followed by Norway-810/9/99. NBISA01 and RPC/NB-01-0593-01 (both of North American genotype) showed low fold up-regulation of transcripts that were highly induced by RPC/NB-04-085-1 isolate. These findings show that ISAV isolates have strain-specific variations in their ability to induce immune response genes.


BMC Genomics | 2012

A moderate increase in ambient temperature modulates the Atlantic cod (Gadus morhua) spleen transcriptome response to intraperitoneal viral mimic injection

Tiago S. Hori; A. Kurt Gamperl; Marije Booman; Gordon W. Nash; Matthew L. Rise

BackgroundAtlantic cod (Gadus morhua) reared in sea-cages can experience large variations in temperature, and these have been shown to affect their immune function. We used the new 20K Atlantic cod microarray to investigate how a water temperature change which, simulates that seen in Newfoundland during the spring-summer (i.e. from 10°C to 16°C, 1°C increase every 5 days) impacted the cod spleen transcriptome response to the intraperitoneal injection of a viral mimic (polyriboinosinic polyribocytidylic acid, pIC).ResultsThe temperature regime alone did not cause any significant increases in plasma cortisol levels and only minor changes in spleen gene transcription. However, it had a considerable impact on the fish spleen transcriptome response to pIC [290 and 339 significantly differentially expressed genes between 16°C and 10°C at 6 and 24 hours post-injection (HPI), respectively]. Seventeen microarray-identified transcripts were selected for QPCR validation based on immune-relevant functional annotations. Fifteen of these transcripts (i.e. 88%), including DHX58, STAT1, IRF7, ISG15, RSAD2 and IκBα, were shown by QPCR to be significantly induced by pIC.ConclusionsThe temperature increase appeared to accelerate the spleen immune transcriptome response to pIC. We found 41 and 999 genes differentially expressed between fish injected with PBS vs. pIC at 10°C and sampled at 6HPI and 24HPI, respectively. In contrast, there were 656 and 246 genes differentially expressed between fish injected with PBS vs. pIC at 16°C and sampled at 6HPI and 24HPI, respectively. Our results indicate that the modulation of mRNA expression of genes belonging to the NF-κB and type I interferon signal transduction pathways may play a role in controlling temperature-induced changes in the spleen’s transcript expression response to pIC. Moreover, interferon effector genes such as ISG15 and RSAD2 were differentially expressed between fish injected with pIC at 10°C vs. 16°C at 6HPI. These results substantially increase our understanding of the genes and molecular pathways involved in the negative impacts of elevated ambient temperature on fish health, and may also be valuable to our understanding of how accelerated global climate change could impact cold-water marine finfish species.


Marine Biotechnology | 2011

An Integrated Approach to Gene Discovery and Marker Development in Atlantic Cod (Gadus morhua)

Sharen Bowman; Sophie Hubert; Brent Higgins; Cynthia Stone; Jennifer Kimball; Tudor Borza; Jillian Tarrant Bussey; Gary Simpson; Catherine Kozera; Bruce A. Curtis; Jennifer R. Hall; Tiago S. Hori; Charles Y. Feng; Marlies Rise; Marije Booman; A. Kurt Gamperl; Edward A. Trippel; Jane E. Symonds; Stewart C. Johnson; Matthew L. Rise

Atlantic cod is a species that has been overexploited by the capture fishery. Programs to domesticate this species are underway in several countries, including Canada, to provide an alternative route for production. Selective breeding programs have been successfully applied in the domestication of other species, with genomics-based approaches used to augment conventional methods of animal production in recent years. Genomics tools, such as gene sequences and sets of variable markers, also have the potential to enhance and accelerate selective breeding programs in aquaculture, and to provide better monitoring tools to ensure that wild cod populations are well managed. We describe the generation of significant genomics resources for Atlantic cod through an integrated genomics/selective breeding approach. These include 158,877 expressed sequence tags (ESTs), a set of annotated putative transcripts and several thousand single nucleotide polymorphism markers that were developed from, and have been shown to be highly variable in, fish enrolled in two selective breeding programs. Our EST collection was generated from various tissues and life cycle stages. In some cases, tissues from which libraries were generated were isolated from fish exposed to stressors, including elevated temperature, or antigen stimulation (bacterial and viral) to enrich for transcripts that are involved in these response pathways. The genomics resources described here support the developing aquaculture industry, enabling the application of molecular markers within selective breeding programs. Marker sets should also find widespread application in fisheries management.


Physiological Genomics | 2010

Impact of asymptomatic nodavirus carrier state and intraperitoneal viral mimic injection on brain transcript expression in Atlantic cod (Gadus morhua)

Matthew L. Rise; Jennifer R. Hall; Marlies Rise; Tiago S. Hori; Mitchell J. Browne; A. Kurt Gamperl; Sophie Hubert; Jennifer Kimball; Sharen Bowman; Stewart C. Johnson

Nodaviruses and other RNA viruses have a profoundly negative impact on the global aquaculture industry. Nodaviruses target nervous tissue causing viral nervous necrosis, a disease characterized by neurological damage, swimming abnormalities, and morbidity. This study used functional genomic techniques to study the Atlantic cod (Gadus morhua) brain transcript expression responses to asymptomatic high nodavirus carrier state and intraperitoneal injection of polyriboinosinic polyribocytidylic acid (pIC). Reciprocal suppression subtractive hybridization (SSH) cDNA libraries enriched for virus-responsive brain transcripts were constructed and characterized. We generated 1,938 expressed sequence tags (ESTs) from a forward brain SSH library (enriched for transcripts upregulated by nodavirus and/or pIC) and 1,980 ESTs from a reverse brain SSH library (enriched for transcripts downregulated by nodavirus and/or pIC). To examine the effect of nodavirus carrier state on individual brain gene expression in asymptomatic cod, 27 transcripts of interest were selected for quantitative reverse transcription-polymerase chain reaction (QPCR) studies. Transcripts found to be >10-fold upregulated in individuals with a high nodavirus carrier state relative to those in a no/low nodavirus carrier state were identified as ISG15, IL8, DHX58 (alias LGP2), ZNFX1, RSAD2 (alias viperin), and SACS (sacsin, alias spastic ataxia of Charlevoix-Saguenay). These and other SSH-identified transcripts were also found by QPCR to be significantly (P < 0.05) upregulated by pIC compared with saline-injected controls within 72 h of injection. Several transcripts identified in the reverse SSH library, including two putative ubiquitination pathway members (HERC4 and SUMO2), were found to be significantly (P < 0.05) downregulated in individuals with a high nodavirus carrier state. Our data shows that Atlantic cod brains have a strong interferon pathway response to asymptomatic high nodavirus carrier state and that many interferon pathway and other immune relevant transcripts are significantly induced in brain by both nodavirus and pIC.


Marine Biotechnology | 2011

Development and Experimental Validation of a 20K Atlantic Cod (Gadus morhua) Oligonucleotide Microarray Based on a Collection of over 150,000 ESTs

Marije Booman; Tudor Borza; Charles Y. Feng; Tiago S. Hori; Brent Higgins; Adrian S. Culf; Daniel Léger; Ian C. Chute; Anissa Belkaid; Marlies Rise; A. Kurt Gamperl; Sophie Hubert; Jennifer Kimball; Rodney J. Ouellette; Stewart C. Johnson; Sharen Bowman; Matthew L. Rise

The collapse of Atlantic cod (Gadus morhua) wild populations strongly impacted the Atlantic cod fishery and led to the development of cod aquaculture. In order to improve aquaculture and broodstock quality, we need to gain knowledge of genes and pathways involved in Atlantic cod responses to pathogens and other stressors. The Atlantic Cod Genomics and Broodstock Development Project has generated over 150,000 expressed sequence tags from 42 cDNA libraries representing various tissues, developmental stages, and stimuli. We used this resource to develop an Atlantic cod oligonucleotide microarray containing 20,000 unique probes. Selection of sequences from the full range of cDNA libraries enables application of the microarray for a broad spectrum of Atlantic cod functional genomics studies. We included sequences that were highly abundant in suppression subtractive hybridization (SSH) libraries, which were enriched for transcripts responsive to pathogens or other stressors. These sequences represent genes that potentially play an important role in stress and/or immune responses, making the microarray particularly useful for studies of Atlantic cod gene expression responses to immune stimuli and other stressors. To demonstrate its value, we used the microarray to analyze the Atlantic cod spleen response to stimulation with formalin-killed, atypical Aeromonas salmonicida, resulting in a gene expression profile that indicates a strong innate immune response. These results were further validated by quantitative PCR analysis and comparison to results from previous analysis of an SSH library. This study shows that the Atlantic cod 20K oligonucleotide microarray is a valuable new tool for Atlantic cod functional genomics research.


Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2008

Impairment of the stress response in matrinxã juveniles (Brycon amazonicus) exposed to low concentrations of phenol

Tiago S. Hori; Ive Marchioni Avilez; George K. Iwama; Stewart C. Johnson; Gilberto Moraes; Luis O.B. Afonso

In this study we measured plasma cortisol, plasma glucose, plasma sodium and potassium, and liver and gill hsp70 levels in juvenile matrinxã (Brycon amazonicus) subjected to a 96 h exposure to phenol (0, 0.2, and 2.0 ppm), and the effect of this exposure on their ability to respond to a subsequent handling stress. Fish were sampled prior to initiation of exposure and 96 h, and at 1, 6, 12, and 24 h post-handling stress. During the 96 h exposure, plasma cortisol and glucose levels remained unchanged in all treatments. While plasma sodium levels were significantly reduced in all groups, plasma potassium levels only decreased in fish exposed to 0 and 0.2 ppm of phenol. Liver hsp70 levels decreased significantly at 96 h in fish exposed to 2.0 ppm of phenol. All groups, except fish exposed to 0.2 ppm of phenol, were able to increase plasma cortisol and glucose levels after handling stress. Fish exposed to 2.0 ppm of phenol showed decreased gill and liver hsp70 levels after the handling stress. Our data suggest that exposure to phenol may compromise the ability of matrinxã to elicit physiological responses to a subsequent stressor.


Comparative Biochemistry and Physiology Part D: Genomics and Proteomics | 2015

Atlantic salmon (Salmo salar) liver transcriptome response to diets containing Camelina sativa products.

Xi Xue; Stefanie M. Hixson; Tiago S. Hori; Marije Booman; Christopher C. Parrish; Derek M. Anderson; Matthew L. Rise

Due to increasing demand for fish oil (FO) and fish meal (FM) in aquafeeds, more sustainable alternatives such as plant-derived oils and proteins are needed. Camelina sativa products are viable feed ingredients given the high oil and crude protein content in the seed. Atlantic salmon were fed diets with complete or partial replacement of FO and/or FM with camelina oil (CO) and/or camelina meal (CM) in a 16-week trial [Control diet: FO; Test diets: 100% CO replacement of FO (100CO), or 100CO with solvent-extracted FM (100COSEFM), 10% CM (100CO10CM), or SEFM+10% CM (100COSEFM10CM)]. Diet composition, growth, and fatty acid analyses for this feeding trial were published previously. A 44K microarray experiment identified liver transcripts that responded to 100COSEFM10CM (associated with reduced growth) compared to controls, yielding 67 differentially expressed features (FDR<5%). Ten microarray-identified genes [cpt1, pcb, bar, igfbp-5b (2 paralogues), btg1, dnph1, lect-2, clra, klf9, and fadsd6a], and three additional genes involved in lipid metabolism [elovl2, elovl5 (2 paralogues), and fadsd5], were subjected to QPCR with liver templates from all 5 dietary treatments. Of the microarray-identified genes, only bar was not QPCR validated. Both igfbp-5b paralogues were significantly down-regulated, and fadsd6a was significantly up-regulated, in all 4 camelina-containing diet groups compared with controls. Multivariate statistics were used to correlate hepatic desaturase and elongase gene expression data with tissue fatty acid profiles, indicating the involvement of these genes in LC-PUFA biosynthesis. This nutrigenomic study provides molecular biomarkers for use in developing novel aquafeeds using camelina products.

Collaboration


Dive into the Tiago S. Hori's collaboration.

Top Co-Authors

Avatar

Matthew L. Rise

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar

A. Kurt Gamperl

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar

Stewart C. Johnson

Fisheries and Oceans Canada

View shared research outputs
Top Co-Authors

Avatar

Jennifer R. Hall

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marije Booman

Memorial University of Newfoundland

View shared research outputs
Top Co-Authors

Avatar

Marlies Rise

Memorial University of Newfoundland

View shared research outputs
Researchain Logo
Decentralizing Knowledge