Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sophie Tremblay is active.

Publication


Featured researches published by Sophie Tremblay.


Nature Medicine | 2008

The succinate receptor GPR91 in neurons has a major role in retinal angiogenesis

Przemyslaw Sapieha; Mirna Sirinyan; David Hamel; Karine Zaniolo; Jean Sébastien Joyal; Jang Hyeon Cho; Jean Claude Honoré; Elsa Kermorvant-Duchemin; Daya R. Varma; Sophie Tremblay; Martin Leduc; Lenka Rihakova; Pierre Hardy; William H. Klein; Xiuqian Mu; Orval Mamer; Pierre Lachapelle; Adriana Di Polo; Christian M. Beauséjour; Gregor Andelfinger; Grant A. Mitchell; Florian Sennlaub; Sylvain Chemtob

Vascularization is essential for tissue development and in restoration of tissue integrity after an ischemic injury. In studies of vascularization, the focus has largely been placed on vascular endothelial growth factor (VEGF), yet other factors may also orchestrate this process. Here we show that succinate accumulates in the hypoxic retina of rodents and, via its cognate receptor G protein–coupled receptor-91 (GPR91), is a potent mediator of vessel growth in the settings of both normal retinal development and proliferative ischemic retinopathy. The effects of GPR91 are mediated by retinal ganglion neurons (RGCs), which, in response to increased succinate levels, regulate the production of numerous angiogenic factors including VEGF. Accordingly, succinate did not have proangiogenic effects in RGC-deficient rats. Our observations show a pathway of metabolite signaling where succinate, acting through GPR91, governs retinal angiogenesis and show the propensity of RGCs to act as sensors of ischemic stress. These findings provide a new therapeutic target for modulating revascularization.


Cell Metabolism | 2013

Neuronal ER stress impedes myeloid-cell-induced vascular regeneration through IRE1α degradation of netrin-1.

François Binet; Gaelle Mawambo; Nicholas Sitaras; Nicolas Tetreault; Eric Lapalme; Sandra Favret; Agustin Cerani; Dominique Leboeuf; Sophie Tremblay; Flavio Rezende; Aimee M. Juan; Andreas Stahl; Jean-Sebastien Joyal; Eric Milot; Randal J. Kaufman; Martin Guimond; Timothy E. Kennedy; Przemyslaw Sapieha

In stroke and proliferative retinopathy, despite hypoxia driven angiogenesis, delayed revascularization of ischemic tissue aggravates the loss of neuronal function. What hinders vascular regrowth in the ischemic central nervous system remains largely unknown. Using the ischemic retina as a model of neurovascular interaction in the CNS, we provide evidence that the failure of reparative angiogenesis is temporally and spatially associated with endoplasmic reticulum (ER) stress. The canonical ER stress pathways of protein kinase RNA-like ER kinase (PERK) and inositol-requiring enzyme-1α (IRE1α) are activated within hypoxic/ischemic retinal ganglion neurons, initiating a cascade that results in angiostatic signals. Our findings demonstrate that the endoribonuclease IRE1α degrades the classical guidance cue netrin-1. This neuron-derived cue triggers a critical reparative-angiogenic switch in neural macrophage/microglial cells. Degradation of netrin-1, by persistent neuronal ER stress, thereby hinders vascular regeneration. These data identify a neuronal-immune mechanism that directly regulates reparative angiogenesis.


Investigative Ophthalmology & Visual Science | 2013

Systemic Inflammation Perturbs Developmental Retinal Angiogenesis and Neuroretinal Function

Sophie Tremblay; Khalil Miloudi; Samaneh Chaychi; Sandra Favret; François Binet; Anna Polosa; Pierre Lachapelle; Sylvain Chemtob; Przemyslaw Sapieha

PURPOSE Perinatal inflammatory stress in preterm babies is associated with increased rates of severe retinopathy of prematurity (ROP) and adverse neurological dysfunction. In this study, we set out to determine the consequences of severe systemic inflammatory stress on developmental retinal vascularization and evaluate the subsequent outcome on retinal function in later life. METHODS Systemic inflammatory stress was induced in C57BL/6J mouse pups by an intraperitoneal injection of lipopolysaccharide (LPS; 1 mg/kg) at postnatal day 4. In response to LPS, retinal inflammation was confirmed by quantitative RT-PCR analysis of diverse inflammatory markers. A detailed and systematic analysis of retinal microglial infiltration, retinal vascular morphology, density, and growth rate was performed at key time points throughout retinal vascularization. Retinal function in adult life was assessed by using electroretinography at 6 weeks postinjection. RESULTS As early as 48 hours after intraperitoneal administration of LPS, a significant increase in retinal vascular density was noted throughout the retina. A pronounced increase in the number of activated microglial cell was observed in the retinal ganglion cell layer and in the outer plexiform layer just prior to their vascularization; direct physical contact between activated microglia and sprouting vessels suggested that microglia partake in promoting the aberrant retinal vascularization. With maturity, animals subjected to perinatal inflammatory stress displayed depleted retinal vascular beds and had significantly decreased retinal function as determined by electroretinography. CONCLUSIONS Our data reveal that early severe postnatal inflammatory stress leads to abnormal retinal vascular development and increased vessel anastomosis and, ultimately, permanently compromises retinal function. The aberrant and initially exaggerated retinal vascularization observed is associated with microglial activation, providing a cellular mechanism by which perinatal sepsis predisposes to ROP.


Investigative Ophthalmology & Visual Science | 2011

Ghrelin Modulates Physiologic and Pathologic Retinal Angiogenesis through GHSR-1a

Karine Zaniolo; Przemyslaw Sapieha; Zhuo Shao; Andreas Stahl; Tang Zhu; Sophie Tremblay; Emilie Picard; Ankush Madaan; Martine Blais; Pierre Lachapelle; Joseph G. Mancini; Pierre Hardy; Lois E. H. Smith; Huy Ong; Sylvain Chemtob

PURPOSE Vascular degeneration and the ensuing abnormal vascular proliferation are central to proliferative retinopathies. Given the metabolic discordance associated with these diseases, the authors explored the role of ghrelin and its growth hormone secretagogue receptor 1a (GHSR-1a) in proliferative retinopathy. METHODS In a rat model of oxygen-induced retinopathy (OIR), the contribution of ghrelin and GHSR-1a was investigated using the stable ghrelin analogs [Dap3]-ghrelin and GHRP6 and the GSHR-1a antagonists JMV-2959 and [D-Lys3]-GHRP-6. Plasma and retinal levels of ghrelin were analyzed by ELISA, whereas retinal expression and localization of GHSR-1a were examined by immunohistochemistry and Western blot analysis. The angiogenic and vasoprotective properties of ghrelin and its receptor were further confirmed in aortic explants and in models of vaso-obliteration. RESULTS Ghrelin is produced locally in the retina, whereas GHSR-1a is abundantly expressed in retinal endothelial cells. Ghrelin levels decrease during the vaso-obliterative phase and rise during the proliferative phase of OIR. Intravitreal delivery of [Dap3]-ghrelin during OIR significantly reduces retinal vessel loss when administered during the hyperoxic phase. Conversely, during the neovascular phase, ghrelin promotes pathologic angiogenesis through the activation of GHSR-1a. These angiogenic effects were confirmed ex vivo in aortic explants. CONCLUSIONS New roles were disclosed for the ghrelin-GHSR-1a pathway in the preservation of retinal vasculature during the vaso-obliterative phase of OIR and during the angiogenic phase of OIR. These findings suggest that the ghrelin-GHSR-1a pathway can exert opposing effects on retinal vasculature, depending on the phase of retinopathy, and thus holds therapeutic potential for proliferative retinopathies.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2010

Sustained hypercapnia induces cerebral microvascular degeneration in the immature brain through induction of nitrative stress.

Jean-Claude Honoré; Amna Kooli; Xin Hou; David Hamel; José Carlos Rivera; Emilie Picard; Pierre Hardy; Sophie Tremblay; Daya R. Varma; Robert P. Jankov; Joseph A. Mancini; Michael Balazy; Sylvain Chemtob

Hypercapnia is regularly observed in chronic lung disease, such as bronchopulmonary dysplasia in preterm infants. Hypercapnia results in increased nitric oxide synthase activity and in vitro formation of nitrates. Neural vasculature of the immature subject is particularly sensitive to nitrative stress. We investigated whether exposure to clinically relevant sustained high CO(2) causes microvascular degeneration in the newborn brain by inducing nitrative stress, and whether this microvascular degeneration has an impact on brain growth. Newborn rat pups were exposed to 10% CO(2) as inspired gas (Pa(CO(2)) = 60-70 mmHg) starting within 24 h of birth until postnatal day 7 (P7). Brains were notably collected at different time points to measure vascular density, determine brain cortical nitrite/nitrate, and trans-arachidonic acids (TAAs; products of nitration) levels as effectors of vessel damage. Chronic exposure of rat pups to high CO(2) (Pa(CO(2)) approximately 65 mmHg) induced a 20% loss in cerebrovascular density at P3 and a 15% decrease in brain mass at P7; at P30, brain mass remained lower in CO(2)-exposed animals. Within 24 h of exposure to CO(2), brain eNOS expression and production of nitrite/nitrate doubled, lipid nitration products (TAAs) increased, and protein nitration (3-nitrotyrosine immunoreactivity) was also coincidently augmented on brain microvessels (lectin positive). Intracerebroventricular injection of TAAs (10 microM) replicated cerebrovascular degeneration. Treatment of rat pups with NOS inhibitor (L-N(omega)-nitroarginine methyl ester) or a peroxynitrite decomposition catalyst (FeTPPS) prevented hypercapnia-induced microvascular degeneration and preserved brain mass. Cytotoxic effects of high CO(2) were reproduced in vitro/ex vivo on cultured endothelial cells and sprouting microvessels. In summary, hypercapnia at values frequently observed in preterm infants with chronic lung disease results in increased nitrative stress, which leads to cerebral cortical microvascular degeneration and curtails brain growth.


Journal of Cellular and Molecular Medicine | 2017

Reduced expression of let-7f activates TGF-β/ALK5 pathway and leads to impaired ischaemia-induced neovascularization after cigarette smoke exposure

Wahiba Dhahri; Sylvie Dussault; Paola Haddad; Julie Turgeon; Sophie Tremblay; Kevin Rolland; Michel Desjarlais; Raphael Mathieu; Alain Rivard

This study sought to determine the potential role of microRNAs (miRNAs) in the detrimental effects of cigarette smoke on angiogenesis and neovascularization. Using large‐scale miRNA profiling and qRT‐PCR analyses, we identified let‐7f as a pro‐angiogenic miRNA which expression is significantly reduced in HUVECs treated with cigarette smoke extracts (CSE), and in the ischemic muscles of mice that are exposed to cigarette smoke (MES). In a mouse model of hindlimb ischaemia, intramuscular injection of let‐7f mimic restored ischaemia‐induced neovascularization in MES. Doppler flow ratios and capillary density in ischemic muscles were significantly improved in MES treated with let‐7f mimic. Clinically, this was associated with reduced ambulatory impairment and hindlimb ischaemic damage. Treatment with let‐7f mimic could also rescue pro‐angiogenic cell (PAC) number and function (attachment, proliferation, migration) in MES. ALK5 (TGF‐βR1), an important modulator of angiogenesis, is a target of let‐7f. Here we show that ALK5 is increased in HUVECs exposed to CSE and in the ischaemic muscles of MES. This is associated with a downstream activation of the anti‐angiogenic factors SMAD2/3 and PAI‐1. Importantly, treatment with let‐7f mimic reduces the expression of ALK5, SMAD2/3 and PAI‐1 both in vitro and in vivo. Moreover, let‐7f overexpression or ALK5 inhibition can rescue angiogenesis in HUVECs exposed to CSE. Cigarette smoke exposure is associated with reduced expression of let‐7f and activation of the anti‐angiogenic TGF‐β/ALK5 pathway. Overexpression of let‐7f using a miRNA mimic could constitute a novel therapeutic strategy to improve ischaemia‐induced neovascularization in pathological conditions.


Scientific Reports | 2016

Lymphocytic Microparticles Modulate Angiogenic Properties of Macrophages in Laser-induced Choroidal Neovascularization

Houda Tahiri; Samy Omri; Chun Yang; François Duhamel; Suzanne Samarani; Ali Ahmad; Mark Vezina; Martin Bussieres; Elvire Vaucher; Przemyslaw Sapieha; Gilles R.X. Hickson; Karim Hammamji; Réjean Lapointe; Francis Rodier; Sophie Tremblay; Isabelle Royal; Jean-François Cailhier; Sylvain Chemtob; Pierre Hardy

Pathological choroidal neovascularization (CNV) is the common cause of vision loss in patients with age-related macular degeneration (AMD). Macrophages possess potential angiogenic function in CNV. We have demonstrated that human T lymphocyte-derived microparticles (LMPs) exert a potent antiangiogenic effect in several pathological neovascularization models. In this study, we investigated the alteration of proangiogenic properties of macrophages by LMPs treatment in vitro and in vivo models. LMPs regulated the expression of several angiogenesis-related factors in macrophages and consequently stimulated their antiangiogenic effects evidenced by the suppression of the proliferation of human retinal endothelial cells in co-culture experiments. The involvement of CD36 receptor in LMPs uptake by macrophages was demonstrated by in vitro assays and by immunostaining of choroidal flat mounts. In addition, ex vivo experiments showed that CD36 mediates the antiangiogenic effect of LMPs in murine and human choroidal explants. Furthermore, intravitreal injection of LMPs in the mouse model of laser-induced CNV significantly suppressed CNV in CD36 dependent manner. The results of this study suggested an ability of LMPs to alter the gene expression pattern of angiogenesis-related factors in macrophages, which provide important information for a new therapeutic approach for efficiently interfering with both vascular and extravascular components of CNV.


Free Radical Biology and Medicine | 2008

Trans-Arachidonic acids induce a heme oxygenase-dependent vasorelaxation of cerebral microvasculature

Amna Kooli; Elsa Kermorvant-Duchemin; Florian Sennlaub; Michela BossolascoM. Bossolasco; Xin Hou; Jean-Claude Honoré; Phyllis A. Dennery; Przemyslaw Sapieha; Daya R. Varma; Pierre Lachapelle; Tang Zhu; Sophie Tremblay; Pierre Hardy; Kavita Jain; Michael Balazy; Sylvain Chemtob


Arteriosclerosis, Thrombosis, and Vascular Biology | 2015

Abstract 644: Role of Micro RNA LET-7F in Cigarette Smoke-Induced Impairment of Neovascularization

Wahiba Dhahri; Sylvie Dussault; Paola Haddad; Julie Turgeon; Sophie Tremblay; Michel Desjarlais; Raphael Mathieu; Alain Rivard


Investigative Ophthalmology & Visual Science | 2013

SYSTEMIC INFLAMMATORY STRESS PROVOKES ABNORMAL RETINAL VASCULAR DEVELOPMENT

Sophie Tremblay; Sandra Favret; François Binet; Samaneh Chaychi; Anna Polosa; Pierre Lachapelle; Sylvain Chemtob; Przemyslaw Sapieha

Collaboration


Dive into the Sophie Tremblay's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre Hardy

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karine Zaniolo

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Pierre Lachapelle

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Sandra Favret

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xin Hou

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Agustin Cerani

Université de Montréal

View shared research outputs
Researchain Logo
Decentralizing Knowledge