Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sorin Draghici is active.

Publication


Featured researches published by Sorin Draghici.


Genomics | 2003

Global functional profiling of gene expression.

Sorin Draghici; Stephen A. Krawetz

The typical result of a microarray experiment is a list of tens or hundreds of genes found to be differentially regulated in the condition under study. Independent of the methods used to select these genes, the common task faced by any researcher is to translate these lists of genes into a better understanding of the biological phenomena involved. Currently, this is done through a tedious combination of searches through the literature and a number of public databases. We developed Onto-Express (OE) as a novel tool able to automatically translate such lists of differentially regulated genes into functional profiles characterizing the impact of the condition studied. OE constructs functional profiles (using Gene Ontology terms) for the following categories: biochemical function, biological process, cellular role, cellular component, molecular function, and chromosome location. Statistical significance values are calculated for each category. We demonstrate the validity and the utility of this comprehensive global analysis of gene function by analyzing two breast cancer datasets from two separate laboratories. OE was able to identify correctly all biological processes postulated by the original authors, as well as discover novel relevant mechanisms.


Bioinformatics | 2009

A novel signaling pathway impact analysis

Adi L. Tarca; Sorin Draghici; Purvesh Khatri; Sonia S. Hassan; Pooja Mittal; Jung-Sun Kim; Chong Jai Kim; Juan Pedro Kusanovic; Roberto Romero

MOTIVATION Gene expression class comparison studies may identify hundreds or thousands of genes as differentially expressed (DE) between sample groups. Gaining biological insight from the result of such experiments can be approached, for instance, by identifying the signaling pathways impacted by the observed changes. Most of the existing pathway analysis methods focus on either the number of DE genes observed in a given pathway (enrichment analysis methods), or on the correlation between the pathway genes and the class of the samples (functional class scoring methods). Both approaches treat the pathways as simple sets of genes, disregarding the complex gene interactions that these pathways are built to describe. RESULTS We describe a novel signaling pathway impact analysis (SPIA) that combines the evidence obtained from the classical enrichment analysis with a novel type of evidence, which measures the actual perturbation on a given pathway under a given condition. A bootstrap procedure is used to assess the significance of the observed total pathway perturbation. Using simulations we show that the evidence derived from perturbations is independent of the pathway enrichment evidence. This allows us to calculate a global pathway significance P-value, which combines the enrichment and perturbation P-values. We illustrate the capabilities of the novel method on four real datasets. The results obtained on these data show that SPIA has better specificity and more sensitivity than several widely used pathway analysis methods. AVAILABILITY SPIA was implemented as an R package available at http://vortex.cs.wayne.edu/ontoexpress/


Nature Reviews Genetics | 2008

Use and misuse of the gene ontology annotations

Seung Y. Rhee; Valerie Wood; Kara Dolinski; Sorin Draghici

The Gene Ontology (GO) project is a collaboration among model organism databases to describe gene products from all organisms using a consistent and computable language. GO produces sets of explicitly defined, structured vocabularies that describe biological processes, molecular functions and cellular components of gene products in both a computer- and human-readable manner. Here we describe key aspects of GO, which, when overlooked, can cause erroneous results, and address how these pitfalls can be avoided.


Nucleic Acids Research | 2003

Onto-Tools, the toolkit of the modern biologist: Onto-Express, Onto-Compare, Onto-Design and Onto-Translate

Sorin Draghici; Purvesh Khatri; Pratik Bhavsar; Abhik Shah; Stephen A. Krawetz; Michael A. Tainsky

Onto-Tools is a set of four seamlessly integrated databases: Onto-Express, Onto-Compare, Onto-Design and Onto-Translate. Onto-Express is able to automatically translate lists of genes found to be differentially regulated in a given condition into functional profiles characterizing the impact of the condition studied upon various biological processes and pathways. OE constructs functional profiles (using Gene Ontology terms) for the following categories: biochemical function, biological process, cellular role, cellular component, molecular function and chromosome location. Statistical significance values are calculated for each category. Once the initial exploratory analysis identified a number of relevant biological processes, specific mechanisms of interactions can be hypothesized for the conditions studied. Currently, many commercial arrays are available for the investigation of specific mechanisms. Each such array is characterized by a biological bias determined by the extent to which the genes present on the array represent specific pathways. Onto-Compare is a tool that allows efficient comparisons of any sets of commercial or custom arrays. Using Onto-Compare, a researcher can determine quickly which array, or set of arrays, covers best the hypotheses studied. In many situations, no commercial arrays are available for specific biological mechanisms. Onto-Design is a tool that allows the user to select genes that represent given functional categories. Onto-Translate allows the user to translate easily lists of accession numbers, UniGene clusters and Affymetrix probes into one another. All tools above are seamlessly integrated. The Onto-Tools are available online at http://vortex.cs.wayne.edu/Projects.html.


Genome Biology | 2010

NetPath: a public resource of curated signal transduction pathways.

Kumaran Kandasamy; S. Sujatha Mohan; Rajesh Raju; Shivakumar Keerthikumar; Ghantasala S. Sameer Kumar; Abhilash Venugopal; Deepthi Telikicherla; Daniel J. Navarro; Suresh Mathivanan; Christian Pecquet; Sashi Kanth Gollapudi; Sudhir Gopal Tattikota; Shyam Mohan; Hariprasad Padhukasahasram; Yashwanth Subbannayya; Renu Goel; Harrys K.C. Jacob; Jun Zhong; Raja Sekhar; Vishalakshi Nanjappa; Lavanya Balakrishnan; Roopashree Subbaiah; Yl Ramachandra; B. Abdul Rahiman; T. S. Keshava Prasad; Jian Xin Lin; Jon C. D. Houtman; Stephen Desiderio; Jean-Christophe Renauld; Stefan N. Constantinescu

We have developed NetPath as a resource of curated human signaling pathways. As an initial step, NetPath provides detailed maps of a number of immune signaling pathways, which include approximately 1,600 reactions annotated from the literature and more than 2,800 instances of transcriptionally regulated genes - all linked to over 5,500 published articles. We anticipate NetPath to become a consolidated resource for human signaling pathways that should enable systems biology approaches.


Human Reproduction | 2011

A survey of small RNAs in human sperm

Stephen A. Krawetz; Adele Kruger; Claudia Lalancette; Rebecca Tagett; Ester Anton; Sorin Draghici; Michael P. Diamond

BACKGROUND There has been substantial interest in assessing whether RNAs (mRNAs and sncRNAs, i.e. small non-coding) delivered from mammalian spermatozoa play a functional role in early embryo development. While the cadre of spermatozoal mRNAs has been characterized, comparatively little is known about the distribution or function of the estimated 24,000 sncRNAs within each normal human spermatozoon. METHODS RNAs of <200 bases in length were isolated from the ejaculates from three donors of proved fertility. RNAs of 18-30 nucleotides in length were then used to construct small RNA Digital Gene Expression libraries for Next Generation Sequencing. Known sncRNAs that uniquely mapped to a single location in the human genome were identified. RESULTS Bioinformatic analysis revealed the presence of multiple classes of small RNAs in human spermatozoa. The primary classes resolved included microRNA (miRNAs) (≈ 7%), Piwi-interacting piRNAs (≈ 17%), repeat-associated small RNAs (≈ 65%). A minor subset of short RNAs within the transcription start site/promoter fraction (≈ 11%) frames the histone promoter-associated regions enriched in genes of early embryonic development. These have been termed quiescent RNAs. CONCLUSIONS A complex population of male derived sncRNAs that are available for delivery upon fertilization was revealed. Sperm miRNA-targeted enrichment in the human oocyte is consistent with their role as modifiers of early post-fertilization. The relative abundance of piRNAs and repeat-associated RNAs suggests that they may assume a role in confrontation and consolidation. This may ensure the compatibility of the genomes at fertilization.


Nucleic Acids Research | 2004

Onto-Tools: an ensemble of web-accessible, ontology-based tools for the functional design and interpretation of high-throughput gene expression experiments

Purvesh Khatri; Pratik Bhavsar; Gagandeep Bawa; Sorin Draghici

The Onto-Tools suite is composed of an annotation database and five seamlessly integrated web-accessible data mining tools: Onto-Express (OE), Onto-Compare (OC), Onto-Design (OD), Onto-Translate (OT) and Onto-Miner (OM). OM is a new tool that provides a unified access point and an application programming interface for most annotations available. Our database has been enhanced with more than 120 new commercial microarrays and annotations for Rattus norvegicus, Drosophila melanogaster and Carnorhabditis elegans. The Onto-Tools have been redesigned to provide better biological insight, improved performance and user convenience. The new features implemented in OE include support for gene names, LocusLink IDs and Gene Ontology (GO) IDs, ability to specify fold changes for the input genes, links to the KEGG pathway database and detailed output files. OC allows comparisons of the functional bias of more than 170 commercial microarrays. The latest version of OD allows the user to specify keywords if the exact GO term is not known as well as providing more details than the previous version. OE, OC and OD now have an integrated GO browser that allows the user to customize the level of abstraction for each GO category. The Onto-Tools are available online at http://vortex.cs.wayne.edu/Projects.html.


Cancer Research | 2006

Diagnostic Markers of Ovarian Cancer by High-Throughput Antigen Cloning and Detection on Arrays

Madhumita Chatterjee; Saroj K. Mohapatra; Alexei Ionan; Gagandeep Bawa; Rouba Ali-Fehmi; Xiaoju Wang; James E. Nowak; Bin Ye; Fatimah A. Nahhas; Karen H. Lu; Steven S. Witkin; David A. Fishman; Adnan R. Munkarah; Robert T. Morris; Nancy Levin; Natalie N. Shirley; Gerard Tromp; Judith Abrams; Sorin Draghici; Michael A. Tainsky

A noninvasive screening test would significantly facilitate early detection of epithelial ovarian cancer. This study used a combination of high-throughput selection and array-based serologic detection of many antigens indicative of the presence of cancer, thereby using the immune system as a biosensor. This high-throughput selection involved biopanning of an ovarian cancer phage display library using serum immunoglobulins from an ovarian cancer patient as bait. Protein macroarrays containing 480 of these selected antigen clones revealed 65 clones that interacted with immunoglobulins in sera from 32 ovarian cancer patients but not with sera from 25 healthy women or 14 patients having other benign or malignant gynecologic diseases. Sequence analysis data of these 65 clones revealed 62 different antigens. Among the markers, we identified some known antigens, including RCAS1, signal recognition protein-19, AHNAK-related sequence, nuclear autoantogenic sperm protein, Nijmegen breakage syndrome 1 (Nibrin), ribosomal protein L4, Homo sapiens KIAA0419 gene product, eukaryotic initiation factor 5A, and casein kinase II, as well as many previously uncharacterized antigenic gene products. Using these 65 antigens on protein microarrays, we trained neural networks on two-color fluorescent detection of serum IgG binding and found an average sensitivity and specificity of 55% and 98%, respectively. In addition, the top 6 of the most specific clones resulted in an average sensitivity and specificity of 32% and 94%, respectively. This global approach to antigenic profiling, epitomics, has applications to cancer and autoimmune diseases for diagnostic and therapeutic studies. Further work with larger panels of antigens should provide a comprehensive set of markers with sufficient sensitivity and specificity suitable for clinical testing in high-risk populations.


Oncogene | 2003

Epigenetic silencing of multiple interferon pathway genes after cellular immortalization

Olga I. Kulaeva; Sorin Draghici; Lin Tang; Janice M. Kraniak; Susan Land; Michael A. Tainsky

Abrogating cellular senescence is a necessary step in the formation of a cancer cell. Promoter hypermethylation is an epigenetic mechanism of gene regulation known to silence gene expression in carcinogenesis. Treatment of spontaneously immortal Li–Fraumeni fibroblasts with 5-aza-2′-deoxycytidine (5AZA-dC), an inhibitor of DNA methyltransferase (DNMT), induces a senescence-like state. We used microarrays containing 12 558 genes to determine the gene expression profile associated with cellular immortalization and also regulated by 5AZA-dC. Remarkably, among 85 genes with methylation-dependent downregulation (silencing) after immortalization, 39 (46%) are known to be regulated during interferon signaling, a known growth-suppressive pathway. This work indicates that gene silencing may be associated with an early event in carcinogenesis, cellular immortalization.


Drug Discovery Today | 2002

Statistical intelligence: effective analysis of high-density microarray data.

Sorin Draghici

Microarrays enable researchers to interrogate thousands of genes simultaneously. A crucial step in data analysis is the selection of subsets of interesting genes from the initial set of genes. In many cases, especially when comparing genes expressed in a specific condition to a reference condition, the genes of interest are those which are differentially regulated. This review focuses on the methods currently available for the selection of such genes. Fold change, unusual ratio, univariate testing with correction for multiple experiments, ANOVA and noise sampling methods are reviewed and compared.

Collaboration


Dive into the Sorin Draghici's collaboration.

Top Co-Authors

Avatar

Adi L. Tarca

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Roberto Romero

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Sonia S. Hassan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chong Jai Kim

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Juan Pedro Kusanovic

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge