Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Soroosh Sorooshian is active.

Publication


Featured researches published by Soroosh Sorooshian.


Water Resources Research | 1992

Effective and efficient global optimization for conceptual rainfall-runoff models

Qingyun Duan; Soroosh Sorooshian; Vijai Kumar Gupta

The successful application of a conceptual rainfall-runoff (CRR) model depends on how well it is calibrated. Despite the popularity of CRR models, reports in the literature indicate that it is typically difficult, if not impossible, to obtain unique optimal values for their parameters using automatic calibration methods. Unless the best set of parameters associated with a given calibration data set can be found, it is difficult to determine how sensitive the parameter estimates (and hence the model forecasts) are to factors such as input and output data error, model error, quantity and quality of data, objective function used, and so on. Results are presented that establish clearly the nature of the multiple optima problem for the research CRR model SIXPAR. These results suggest that the CRR model optimization problem is more difficult than had been previously thought and that currently used local search procedures have a very low probability of successfully finding the optimal parameter sets. Next, the performance of three existing global search procedures are evaluated on the model SIXPAR. Finally, a powerful new global optimization procedure is presented, entitled the shuffled complex evolution (SCE-UA) method, which was able to consistently locate the global optimum of the SIXPAR model, and appears to be capable of efficiently and effectively solving the CRR model optimization problem.


Remote Sensing of Environment | 1994

A Modified Soil Adjusted Vegetation Index

J. Qi; A. Chehbouni; Alfredo R. Huete; Yann Kerr; Soroosh Sorooshian

There is currently a great deal of interest in the quantitative characterization of temporal and spatial vegetation patterns with remotely sensed data for the study of earth system science and global change. Spectral models and indices are being developed to improve vegetation sensitivity by accounting for atmosphere and soil effects. The soil-adjusted vegetation index (SAVI) was developed to minimize soil influences on canopy spectra by incorporating a soil adjustment factor L into the denominator of the normalized difference vegetation index (NDVI) equation. For optimal adjustment of the soil effect, however, the L factor should vary inversely with the amount of vegetation present. A modified SAVI (MSAVI) that replaces the constant L in the SAVI equation with a variable L function is presented in this article. The L function may be derived by induction or by using the product of the NDVI and weighted difference vegetation index (WDVI). Results based on ground and aircraft-measured cotton canopies are presented. The MSAVI is shown to increase the dynamic range of the vegetation signal while further minimizing the soil background influences, resulting in greater vegetation sensitivity as defined by a “vegetation signal” to “soil noise” ratio.


Water Resources Research | 1998

Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information

Hoshin V. Gupta; Soroosh Sorooshian; Patrice Ogou Yapo

Several contributions to the hydrological literature have brought into question the continued usefulness of the classical paradigm for hydrologic model calibration. With the growing popularity of sophisticated “physically based” watershed models (e.g., land-surface hydrology and hydrochemical models) the complexity of the calibration problem has been multiplied many fold. We disagree with the seemingly widespread conviction that the model calibration problem will simply disappear with the availability of more and better field measurements. This paper suggests that the emergence of a new and more powerful model calibration paradigm must include recognition of the inherent multiobjective nature of the problem and must explicitly recognize the role of model error. The results of our preliminary studies are presented. Through an illustrative case study we show that the multiobjective approach is not only practical and relatively simple to implement but can also provide useful information about the limitations of a model.


Journal of Optimization Theory and Applications | 1993

Shuffled complex evolution approach for effective and efficient global minimization

Qingyun Duan; Vijai Kumar Gupta; Soroosh Sorooshian

The degree of difficulty in solving a global optimization problem is in general dependent on the dimensionality of the problem and certain characteristics of the objective function. This paper discusses five of these characteristics and presents a strategy for function optimization called the shuffled complex evolution (SCE) method, which promises to be robust, effective, and efficient for a broad class of problems. The SCE method is based on a synthesis of four concepts that have proved successful for global optimization: (a) combination of probabilistic and deterministic approaches; (b) clustering; (c) systematic evolution of a complex of points spanning the space, in the direction of global improvement; and (d) competitive evolution. Two algorithms based on the SCE method are presented. These algorithms are tested by running 100 randomly initiated trials on eight test problems of differing difficulty. The performance of the two algorithms is compared to that of the controlled random search CRS2 method presented by Price (1983, 1987) and to a multistart algorithm based on the simplex method presented by Nelder and Mead (1965).


Water Resources Research | 1995

Artificial Neural Network Modeling of the Rainfall-Runoff Process

Kuolin Hsu; Hoshin V. Gupta; Soroosh Sorooshian

An artificial neural network (ANN) is a flexible mathematical structure which is capable of identifying complex nonlinear relationships between input and output data sets. ANN models have been found useful and efficient, particularly in problems for which the characteristics of the processes are difficult to describe using physical equations. This study presents a new procedure (entitled linear least squares simplex, or LLSSIM) for identifying the structure and parameters of three-layer feed forward ANN models and demonstrates the potential of such models for simulating the nonlinear hydrologic behavior of watersheds. The nonlinear ANN model approach is shown to provide a better representation of the rainfall-runoff relationship of the medium-size Leaf River basin near Collins, Mississippi, than the linear ARMAX (autoregressive moving average with exogenous inputs) time series approach or the conceptual SAC-SMA (Sacramento soil moisture accounting) model. Because the ANN approach presented here does not provide models that have physically realistic components and parameters, it is by no means a substitute for conceptual watershed modeling. However, the ANN approach does provide a viable and effective alternative to the ARMAX time series approach for developing input-output simulation and forecasting models in situations that do not require modeling of the internal structure of the watershed.


Water Resources Research | 2003

A shuffled complex evolution metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters

Jasper A. Vrugt; Hoshin V. Gupta; Willem Bouten; Soroosh Sorooshian

Author(s): Vrugt, JA; Gupta, HV; Bouten, W; Sorooshian, S | Abstract: Markov Chain Monte Carlo (MCMC) methods have become increasingly popular for estimating the posterior probability distribution of parameters in hydrologic models. However, MCMC methods require the a priori definition of a proposal or sampling distribution, which determines the explorative capabilities and efficiency of the sampler and therefore the statistical properties of the Markov Chain and its rate of convergence. In this paper we present an MCMC sampler entitled the Shuffled Complex Evolution Metropolis algorithm (SCEM-UA), which is well suited to infer the posterior distribution of hydrologic model parameters. The SCEM-UA algorithm is a modified version of the original SCE-UA global optimization algorithm developed by Duan et al. [1992]. The SCEM-UA algorithm operates by merging the strengths of the Metropolis algorithm, controlled random search, competitive evolution, and complex shuffling in order to continuously update the proposal distribution and evolve the sampler to the posterior target distribution. Three case studies demonstrate that the adaptive capability of the SCEM-UA algorithm significantly reduces the number of model simulations needed to infer the posterior distribution of the parameters when compared with the traditional Metropolis-Hastings samplers.


Journal of Hydrology | 1994

Optimal use of the SCE-UA global optimization method for calibrating watershed models

Qingyun Duan; Soroosh Sorooshian; Vijai Kumar Gupta

Abstract The difficulties involved in calibrating conceptual watershed models have, in the past, been partly attributable to the lack of robust optimization tools. Recently, a global optimization method known as the SCE-UA (shuffled complex evolution method developed at The University of Arizona) has shown promise as an effective and efficient optimization technique for calibrating watershed models. Experience with the method has indicated that the effectiveness and efficiency of the algorithm are influenced by the choice of the algorithmic parameters. This paper first reviews the essential concepts of the SCE-UA method and then presents the results of several experimental studies in which the National Weather Service river forecast system-soil moisture accounting (NWSRFS-SMA) model, used by the National Weather Service for river and flood forecasting, was calibrated using different algorithmic parameter setups. On the basis of these results, the recommended values for the algorithmic parameters are given. These values should also help to provide guidelines for other users of the SCE-UA method.


Journal of Hydrology | 1998

Multi-objective global optimization for hydrologic models

Patrice Ogou Yapo; Hoshin V. Gupta; Soroosh Sorooshian

The development of automated (computer-based) calibration methods has focused mainly on the selection of a single-objective measure of the distance between the model-simulated output and the data and the selection of an automatic optimization algorithm to search for the parameter values which minimize that distance. However, practical experience with model calibration suggests that no single-objective function is adequate to measure the ways in which the model fails to match the important characteristics of the observed data. Given that some of the latest hydrologic models simulate several of the watershed output fluxes (e.g. water, energy, chemical constituents, etc.), there is a need for effective and efficient multi-objective calibration procedures capable of exploiting all of the useful information about the physical system contained in the measurement data time series. The MOCOM-UA algorithm, an effective and efficient methodology for solving the multiple-objective global optimization problem, is presented in this paper. The method is an extension of the successful SCE-UA single-objective global optimization algorithm. The features and capabilities of MOCOM-UA are illustrated by means of a simple hydrologic model calibration study.


Journal of Applied Meteorology | 1997

Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks

Kou Lin Hsu; Xiaogang Gao; Soroosh Sorooshian; Hoshin V. Gupta

Abstract A system for Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) is under development at The University of Arizona. The current core of this system is an adaptive Artificial Neural Network (ANN) model that estimates rainfall rates using infrared satellite imagery and ground-surface information. The model was initially calibrated over the Japanese Islands using remotely sensed infrared data collected by the Geostationary Meteorological Satellite (GMS) and ground-based data collected by the Automated Meteorological Data Acquisition System (AMeDAS). The model was then validated for both the Japanese Islands (using GMS and AMeDAS data) and the Florida peninsula (using GOES-8 and NEXRAD data). An adaptive procedure is used to recursively update the network parameters when ground-based data are available. This feature dramatically improves the estimation performance in response to the diverse precipitation characteristics of different geographical regio...


Water Resources Research | 2000

Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods

Douglas P. Boyle; Hoshin V. Gupta; Soroosh Sorooshian

Automatic methods for model calibration seek to take advantage of the speed and power of digital computers, while being objective and relatively easy to implement. However, they do not provide parameter estimates and hydrograph simulations that are considered acceptable by the hydrologists responsible for operational forecasting and have therefore not entered into widespread use. In contrast, the manual approach which has been developed and refined over the years to result in excellent model calibrations is complicated and highly labor-intensive, and the expertise acquired by one individual with a specific model is not easily transferred to another person (or model). In this paper, we propose a hybrid approach that combines the strengths of each. A multicriteria formulation is used to “model” the evaluation techniques and strategies used in manual calibration, and the resulting optimization problem is solved by means of a computerized algorithm. The new approach provides a stronger test of model performance than methods that use a single overall statistic to aggregate model errors over a large range of hydrologie behaviors. The power of the new approach is illustrated by means of a case study using the Sacramento Soil Moisture Accounting model.

Collaboration


Dive into the Soroosh Sorooshian's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kuolin Hsu

University of California

View shared research outputs
Top Co-Authors

Avatar

Xiaogang Gao

University of California

View shared research outputs
Top Co-Authors

Avatar

Bisher Imam

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qingyun Duan

Beijing Normal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roger C. Bales

University of California

View shared research outputs
Top Co-Authors

Avatar

Ali Behrangi

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge