Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sotirios Stathakis is active.

Publication


Featured researches published by Sotirios Stathakis.


Applied Radiation and Isotopes | 2009

Treatment planning and delivery of IMRT using 6 and 18 MV photon beams without flattening filter

Sotirios Stathakis; C Esquivel; A Gutiérrez; C Buckey; Nikos Papanikolaou

In light of the increasing use of intensity modulated radiation therapy (IMRT) in modern radiotherapy practice, the use of a flattening filter may no longer be necessary. Commissioning data have been measured for a Varian 23EX linear accelerator with 6 and 18 MV photon energies without a flattening filter. Measurements collected for the commissioning of the linac included percent depth dose curves and profiles for field sizes ranging from 2 x 2 to 40 x 40 cm(2) as defined by the jaws and multileaf collimator. Machine total scatter factors were measured and calculated. Measurements were used to model the unflattened beams with the Pinnacle(3) treatment planning system. IMRT plans for prostate, lung, brain and head and neck cancer cases were generated using the flattening filter and flattening filter-free beams. From our results, no difference in the quality of the treatment plans between the flat and unflattened photon beams was noted. There was however a significant decrease in the number of monitor units required for unflattened beam treatment plans due to the increase in linac output-approximately two times and four times higher for the 6 and 18 MV, respectively.


Journal of Applied Clinical Medical Physics | 2015

Flattening filter‐free accelerators: a report from the AAPM Therapy Emerging Technology Assessment Work Group

Ying Xiao; Stephen F. Kry; R Popple; Ellen Yorke; Nikos Papanikolaou; Sotirios Stathakis; P. Xia; Saiful Huq; John E. Bayouth; James M. Galvin; Fang-Fang Yin

This report describes the current state of flattening filter‐free (FFF) radiotherapy beams implemented on conventional linear accelerators, and is aimed primarily at practicing medical physicists. The Therapy Emerging Technology Assessment Work Group of the American Association of Physicists in Medicine (AAPM) formed a writing group to assess FFF technology. The published literature on FFF technology was reviewed, along with technical specifications provided by vendors. Based on this information, supplemented by the clinical experience of the group members, consensus guidelines and recommendations for implementation of FFF technology were developed. Areas in need of further investigation were identified. Removing the flattening filter increases beam intensity, especially near the central axis. Increased intensity reduces treatment time, especially for high‐dose stereotactic radiotherapy/radiosurgery (SRT/SRS). Furthermore, removing the flattening filter reduces out‐of‐field dose and improves beam modeling accuracy. FFF beams are advantageous for small field (e.g., SRS) treatments and are appropriate for intensity‐modulated radiotherapy (IMRT). For conventional 3D radiotherapy of large targets, FFF beams may be disadvantageous compared to flattened beams because of the heterogeneity of FFF beam across the target (unless modulation is employed). For any application, the nonflat beam characteristics and substantially higher dose rates require consideration during the commissioning and quality assurance processes relative to flattened beams, and the appropriate clinical use of the technology needs to be identified. Consideration also needs to be given to these unique characteristics when undertaking facility planning. Several areas still warrant further research and development. Recommendations pertinent to FFF technology, including acceptance testing, commissioning, quality assurance, radiation safety, and facility planning, are presented. Examples of clinical applications are provided. Several of the areas in which future research and development are needed are also indicated. PACS number: 87.53.‐j, 87.53.Bn, 87.53.Ly, 87.55.‐x, 87.55.N‐, 87.56.bc


Physics in Medicine and Biology | 2006

Characterization of megavoltage electron beams delivered through a photon multi-leaf collimator (pMLC).

F du Plessis; Antonio Leal; Sotirios Stathakis; W Xiong; C.-M. Ma

A study is presented that characterizes megavoltage electron beams delivered through an existing double-focused photon multi-leaf collimator (pMLC) using film measurements in a solid water phantom. Machine output stability and linearity were evaluated as well as the effect of source-to-surface distance (SSD) and field size on the penumbra for electron energies between 6 and 18 MeV over an SSD range of 60-100 cm. Penumbra variations as a function of field size, depth of measurement and the influence of the jaws were also studied. Field abutment, field flatness and target coverage for segmented beams were also addressed. The measured field size for electrons transported through the pMLC was the same as that for an x-ray beam up to SSDs of 70 cm. At larger SSD, the lower energy electron fields deviated from the projected field. Penumbra data indicated that 60 cm SSD was the most favourable treatment distance. Backprojection of P(20-80) penumbra data yielded a virtual source position located at 98.9 cm from the surface for 18 MeV electrons. For 6 MeV electrons, the virtual source position was at a distance of 82.6 cm. Penumbra values were smaller for small beam slits and reached a near-constant value for field widths larger than 5 cm. The influence of the jaws had a small effect on the penumbra. The R90 values ranged from 1.4 to 4.8 cm between 6 and 21 MeV as measured at 60 cm SSD for a 9 x 9 cm2 field. Uniformity and penumbra improvement could be demonstrated using weighted abutted fields especially useful for small segments. No detectable electron leakage through the pMLC was observed. Bremsstrahlung measurements taken at 60 cm SSD for a 9 x 9 cm2 field as shaped by the pMLC compared within 1% to bremsstrahlung measurements taken at 100 cm SSD for a 10 x 10 cm2 electron applicator field at 100 cm SSD.


Physics in Medicine and Biology | 2006

Ultra-thin TLDs for skin dose determination in high energy photon beams.

Sotirios Stathakis; J Li; K Paskalev; Yang J; L Wang; C.-M. Ma

Estimation of surface dose is very important for patients undergoing radiation therapy. In this work we investigate the dose at the surface of a water phantom and at a depth of 0.007 cm, the practical reference depth for skin as recommended by ICRP and ICRU, with ultra-thin TLDs and Monte Carlo calculations. The calculations and measurements were carried out for fields ranging from 5 x 5 cm2 to 20 x 20 cm2 for 6 MV, 10 MV and 18 MV photon beams. The variation of the surface dose with angle of incidence and field size was investigated. Also, the exit dose was computed and measured for the same fields and angles of incidence. The dose at the ICRU reference depth was computed. Good agreement (+/-5%) was achieved between measurements and calculations. The surface dose at the entrance increased with the angle of incidence and/or the field size. The exit dose decreased with the angle of incidence but it increased with field size. The dose at the surface of the patient is mostly dependent on the beam energy, modality and beam obliquity rather than the field size and field separation. By correlating TLD measurements with Monte Carlo calculations, we were able to predict the dose at the skin surface with good accuracy. Knowing the dose received at the surface of the patient can lead to prediction of skin reactions helping with the design of new treatment techniques and alternative dose fractionation schemes.


Journal of Applied Clinical Medical Physics | 2007

Monte Carlo determination of radiation-induced cancer risks for prostate patients undergoing intensity-modulated radiation therapy

Sotirios Stathakis; J Li; Charlie C.M. Ma

The application of intensity‐modulated radiation therapy (IMRT) has enabled the delivery of high doses to the target volume while sparing the surrounding normal tissues. The drawbacks of intensity modulation, as implemented using a computer‐controlled multileaf collimator (MLC), are the larger number of monitor units (MUs) and longer beam‐on time as compared with conventional radiotherapy. Additionally, IMRT uses more beam directions—typically 5 – 9 for prostate treatment—to achieve highly conformal dose and normal‐tissue sparing. In the present work, we study radiation‐induced cancer risks attributable to IMRT delivery using MLC for prostate patients. Whole‐body computed tomography scans were used in our study to calculate (according to report no. 116 from the National Council on Radiation Protection and Measurements) the effective dose equivalent received by individual organs. We used EGS4 and MCSIM to compute the dose for IMRT and three‐dimensional conformal radiotherapy. The effects of collimator rotation, distance from the treatment field, and scatter and leakage contribution to the whole‐body dose were investigated. We calculated the whole‐body dose equivalent to estimate the increase in the risk of secondary malignancies. Our results showed an overall doubling in the risk of secondary malignancies from the application of IMRT as compared with conventional radiotherapy. This increase in the risk of secondary malignancies is not necessarily related to a relative increase in MUs. The whole‐body dose equivalent was also affected by collimator rotation, field size, and the energy of the photon beam. Smaller field sizes of low‐energy photon beams (that is, 6 MV) with the MLC axis along the lateral axis of the patient resulted in the lowest whole‐body dose. Our results can be used to evaluate the risk of secondary malignancies for prostate IMRT patients. PACS: 87.53.wz, 87.53.‐j


Medical Physics | 2013

Characterization of a novel 2D array dosimeter for patient‐specific quality assurance with volumetric arc therapy

Sotirios Stathakis; P Myers; C Esquivel; Panayiotis Mavroidis; Nikos Papanikolaou

PURPOSE In this study, the authors are evaluating a new, commercially available 2D array that offers 3D dose reconstruction for patient specific intensity modulated radiation therapy quality assurance (IMRT QA). METHODS The OCTAVIUS 4D system and its accompanying software (VERISOFT) by PTW were evaluated for the accuracy of the dose reconstruction for patient specific pretreatment IMRT QA. OCTAVIUS 4D measures the dose plane at the linac isocenter as the phantom rotates synchronously with the gantry, maintaining perpendicularity with the beam, by means of an inclinometer and a motor. The measurements collected during a volumetric modulated arc therapy delivery (VMAT) are reconstructed into a 3D dose volume. The VERISOFT application is used to perform the analysis, by comparing the reconstructed dose against the 3D dose matrix from the treatment planning system (TPS) that is computed for the same geometry and beam arrangement as that of the measurement. In this study, the authors evaluated the 3D dose reconstruction algorithm of this new system using a series of tests. Using the Octavius 4D phantom as the patient, dose distributions for various field sizes, beam orientations, shapes, and combination of fields were calculated using the Pinnacle3, TPS, and the respective DICOMRT dose was exported to the VERISOFT analysis software. Measurements were obtained by delivering the test treatment plans and comparisons were made based on gamma index, dose profiles, and isodose distribution analysis. In addition, output factors were measured and the dose linearity of the array was assessed. Those measurements were compared against measurements in water using a single, calibrated ionization chamber as well as calculations from Pinnacle for the same delivery geometries. RESULTS The number of voxels that met the 3%/3 mm criteria for the volumetric 3D gamma index analysis ranged from 92.3% to 98.9% for all the patient plans that the authors evaluated. 2D gamma analysis in the axial, sagittal, and coronal planes produced similar results to those in the 3D gamma analysis. The new detector system does not require an angular dependence correction because it rotates in synchrony with the gantry and the detector array maintains a constant SAD while always perpendicular to the beam axis. Output factors were within 2% when compared to ionization chamber measurements and Pinnacle calculations. Similar agreement was observed when testing the MU linearity (for MU values above 2) as well as dose rate effect. CONCLUSIONS The OCTAVIUS 4D system has some unique characteristics that can potentially improve the patient specific pretreatment IMRT QA data collection and analysis. The ability of the software to reconstruct from the measurements the true 3D dose distribution in the phantom, provides a unique perspective for the medical physicist that evaluates a patients QA plan.


Journal of Applied Clinical Medical Physics | 2012

On the quantification of the dosimetric accuracy of collapsed cone convolution superposition (CCCS) algorithm for small lung volumes using IMRT

O Calvo; A Gutiérrez; Sotirios Stathakis; C Esquivel; Nikos Papanikolaou

Specialized techniques that make use of small field dosimetry are common practice in todays clinics. These new techniques represent a big challenge to the treatment planning systems due to the lack of lateral electronic equilibrium. Because of this, the necessity of planning systems to overcome such difficulties and provide an accurate representation of the true value is of significant importance. Pinnacle3 is one such planning system. During the IMRT optimization process, Pinnacle3 treatment planning system allows the user to specify a minimum segment size which results in multiple beams composed of several subsets of different widths. In this study, the accuracy of the engine dose calculation, collapsed cone convolution superposition algorithm (CCCS) used by Pinnacle3, was quantified by Monte Carlo simulations, ionization chamber, and Kodak extended dose range film (EDR2) measurements for 11 SBRT lung patients. Lesions were < 3.0 cm in maximal diameter and <27.0 cm3 in volume. The Monte Carlo EGSnrc\BEAMnrc and EGS4\MCSIM were used in the comparison. The minimum segment size allowable during optimization had a direct impact on the number of monitor units calculated for each beam. Plans with the smallest minimum segment size (0.1 cm2 to 2.0 cm2) had the largest number of MUs. Although PTV coverage remained unaffected, the segment size did have an effect on the dose to the organs at risk. Pinnacle3‐calculated PTV mean doses were in agreement with Monte Carlo‐calculated mean doses to within 5.6% for all plans. On average, the mean dose difference between Monte Carlo and Pinnacle3 for all 88 plans was 1.38%. The largest discrepancy in maximum dose was 5.8%, and was noted for one of the plans using a minimum segment size of 0.1 cm2. For minimum dose to the PTV, a maximum discrepancy between Monte Carlo and Pinnacle3 was noted of 12.5% for a plan using a 6.0 cm2 minimum segment size. Agreement between point dose measurements and Pinnacle3‐calculated doses were on average within 0.7% in both phantoms. The profiles show a good agreement between Pinnacle3, Monte Carlo, and EDR2 film. The gamma index and the isodose lines support the result. PACS number: 87.56.bd


Journal of Applied Clinical Medical Physics | 2011

Consistency and reproducibility of the VMAT plan delivery using three independent validation methods

Varatharaj Chandraraj; Sotirios Stathakis; Ravikumar Manickam; C Esquivel; Sanjay S. Supe; Nikos Papanikolaou

The complexity of VMAT delivery requires new methods and potentially new tools for the commissioning of these systems. It appears that great consideration is needed for quality assurance (QA) of these treatments since there are limited devices that are dedicated to the QA of rotational delivery. In this present study, we have evaluated the consistency and reproducibility of one prostate and one lung VMAT plans for 31 consecutive days using three different approaches: 1) MLC DynaLog files, 2) in vivo measurements using the multiwire ionization chamber DAVID, and 3) using PTWseven29 2D ARRAY with the OCTAVIUS phantom at our Varian Clinac linear accelerator. Overall, the three methods of testing the reproducibility and consistency of the VMAT delivery were in agreement with each other. All methods showed minimal daily deviations that contributed to clinically insignificant dose variations from day to day. Based on our results, we conclude that the VMAT delivery using a Varian 2100CD linear accelerator equipped with 120 MLC is highly reproducible. PACS numbers: 87.55.Qr and 87.56.Fc


Medical Physics | 2009

Dose-calculation algorithms in the context of inhomogeneity corrections for high energy photon beams

Nikos Papanikolaou; Sotirios Stathakis

Radiation therapy has witnessed a plethora of innovations and developments in the past 15 years. Since the introduction of computed tomography for treatment planning there has been a steady introduction of new methods to refine treatment delivery. Imaging continues to be an integral part of the planning, but also the delivery, of modern radiotherapy. However, all the efforts of image guided radiotherapy, intensity-modulated planning and delivery, adaptive radiotherapy, and everything else that we pride ourselves in having in the armamentarium can fall short, unless there is an accurate dose-calculation algorithm. The agreement between the calculated and delivered doses is of great significance in radiation therapy since the accuracy of the absorbed dose as prescribed determines the clinical outcome. Dose-calculation algorithms have evolved greatly over the years in an effort to be more inclusive of the effects that govern the true radiation transport through the human body. In this Vision 20/20 paper, we look back to see how it all started and where things are now in terms of dose algorithms for photon beams and the inclusion of tissue heterogeneities. Convolution-superposition algorithms have dominated the treatment planning industry for the past few years. Monte Carlo techniques have an inherent accuracy that is superior to any other algorithm and as such will continue to be the gold standard, along with measurements, and maybe one day will be the algorithm of choice for all particle treatment planning in radiation therapy.


Applied Radiation and Isotopes | 2008

Measurement and comparison of skin dose for prostate and head-and-neck patients treated on various IMRT delivery systems

Teboh Roland; Sotirios Stathakis; Rachelle Ramer; N Papanikolaou

Treatment planning systems inaccurately quantify dose deposited to the skin in the course of radiotherapy owing to their inability to properly account for all the surface dose contributing factors. In this work, we describe a technique for accurately measuring skin dose using ultra-thin thermoluminescent dosimeters and EBT gafchromic films. We investigated the variation in average skin dose for prostate and head-and-neck patients undergoing radiotherapy on three IMRT systems including serial/helical tomotherapy, and IMRT-step and shoot system. Helical tomotherapy was observed to deposit the highest average skin dose followed by serial tomotherapy delivery system.

Collaboration


Dive into the Sotirios Stathakis's collaboration.

Top Co-Authors

Avatar

N Papanikolaou

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Nikos Papanikolaou

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Panayiotis Mavroidis

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

C Esquivel

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

A Gutiérrez

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

P Mavroidis

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

A Gutierrez

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Chengyu Shi

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

J Li

Fox Chase Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ganesh Narayanasamy

University of Arkansas for Medical Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge