Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ganesh Narayanasamy is active.

Publication


Featured researches published by Ganesh Narayanasamy.


Journal of Applied Clinical Medical Physics | 2015

Evaluation of Dosimetry Check software for IMRT patient-specific quality assurance

Ganesh Narayanasamy; Travis Zalman; Chul S. Ha; Nikos Papanikolaou; Sotirios Stathakis

The purpose of this study is to evaluate the use of the Dosimetry Check system for patient‐specific IMRT QA. Typical QA methods measure the dose in an array dosimeter surrounded by homogenous medium for which the treatment plan has been recomputed. With the Dosimetry Check system, fluence measurements acquired on a portal dosimeter is applied to the patients CT scans. Instead of making dose comparisons in a plane, Dosimetry Check system produces isodose lines and dose‐volume histograms based on the planning CT images. By exporting the dose distribution from the treatment planning system into the Dosimetry Check system, one is able to make a direct comparison between the calculated dose and the planned dose. The versatility of the software is evaluated with respect to the two IMRT techniques — step and shoot and volumetric arc therapy. The system analyzed measurements made using EPID, PTW seven29, and IBA MatriXX, and an intercomparison study was performed. Plans from patients previously treated at our institution with treated anatomical site on brain, head & neck, liver, lung, and prostate were analyzed using Dosimetry Check system for any anatomical site dependence. We have recommendations and possible precautions that may be necessary to ensure proper QA with the Dosimetry Check system. PACS number: 87.55.Qr, 87.56.Fc


internaltional ultrasonics symposium | 2010

Local compression in automated breast ultrasound in the mammographic geometry

Paul L. Carson; Boyun Wang; Gerald L. LeCarpentier; Mitchell M. Goodsitt; Chris Lashbrook; Renee W. Pinsky; Ganesh Narayanasamy; J. Brian Fowlkes; Kazuhiro Saitou

Background, Motivation and Objective: Automated ultrasound scanning (AUS) of the breast has developed more slowly than anticipated. The main limitation, beyond achieving adequate acoustic coupling to the breast, has been excessive shadow artifacts, as reflecting structures at acute angles to the ultrasound beam are not flattened by the transducer as well as in manual scanning. We believe that imaging of the breast in near mammographic compression provides much of the needed flattening. The question under initial study in this effort is, whether in breast AUS under very light mammographic compression, local compression by the transducer might flatten the acutely oriented structures further and reduce the acoustic path length to key structures in the breast. We suspect these improvements will be possible without distorting the breast so dramatically that the lesion registration advantages of scanning the breast in the same system as mammography or digital breast tomosynthesis (DBT) are not realized. Preliminary tests are reported here, as well as design of a system for a more refined human study. Statement of Contribution/Methods: Initial imaging tests were performed in our combined AUS/DBT system. A fiber mesh, loosened slightly in its frame, replaced the standard plastic mammography compression paddle. The transducer, in contact with the mesh and the breast, was translated by motors. The compression force of the linear array transducer on its vertical was manually controlled. Breast phantoms and the breasts of three women were scanned with usual compression by the mesh paddle and then with less global, but added local, compression. Results: Examples of flattened structures were observed more brightly in the locally compressed breasts, and acoustic paths longer than 35 mm were reduced, by ∼10 mm. In many areas image penetration was 3 cm greater. In one case, image volumes w/wo local compression were spatially aligned by nonlinear image registration software. Discussion and Conclusions: Visual indicators of image features expected to provide improved ultrasonic imaging were observed with local compression and lateral movement of tissues appeared acceptable. These results motivated design and construction of an apparatus to make local compression practical and safe. It utilizes joystick control of the vertical compression force during scanning, realized by pneumatic actuators attached to the transducer. The air pressure applied to these actuators is also applied to actuators in the joystick for force feedback to the operator. Two miniature vibrators attached to the joystick provide vibrotactile feedback of the reaction torques computed from the measurements of 6 force sensors on the transducer holder. The fail-safe system design insures no pneumatic compression force application to the breast in case of power loss or emergency shutdown.


Technology in Cancer Research & Treatment | 2017

Advanced Small Animal Conformal Radiation Therapy Device

Sunil Sharma; Ganesh Narayanasamy; Beata D. Przybyla; Jessica Webber; Marjan Boerma; Richard Clarkson; Eduardo G. Moros; P Corry; Robert J. Griffin

We have developed a small animal conformal radiation therapy device that provides a degree of geometrical/anatomical targeting comparable to what is achievable in a commercial animal irradiator. small animal conformal radiation therapy device is capable of producing precise and accurate conformal delivery of radiation to target as well as for imaging small animals. The small animal conformal radiation therapy device uses an X-ray tube, a robotic animal position system, and a digital imager. The system is in a steel enclosure with adequate lead shielding following National Council on Radiation Protection and Measurements 49 guidelines and verified with Geiger-Mueller survey meter. The X-ray source is calibrated following AAPM TG-61 specifications and mounted at 101.6 cm from the floor, which is a primary barrier. The X-ray tube is mounted on a custom-made “gantry” and has a special collimating assembly system that allows field size between 0.5 mm and 20 cm at isocenter. Three-dimensional imaging can be performed to aid target localization using the same X-ray source at custom settings and an in-house reconstruction software. The small animal conformal radiation therapy device thus provides an excellent integrated system to promote translational research in radiation oncology in an academic laboratory. The purpose of this article is to review shielding and dosimetric measurement and highlight a few successful studies that have been performed to date with our system. In addition, an example of new data from an in vivo rat model of breast cancer is presented in which spatially fractionated radiation alone and in combination with thermal ablation was applied and the therapeutic benefit examined.


Medical Physics | 2009

Spatial registration of temporally separated whole breast 3D ultrasound images

Ganesh Narayanasamy; Gerald L. LeCarpentier; Marilyn A. Roubidoux; J. Brian Fowlkes; Anne F. Schott; Paul L. Carson

The purpose of this study was to evaluate the potential for use of image volume based registration (IVBaR) to aid in measurement of changes in the tumor during chemotherapy of breast cancer. Successful IVBaR could aid in the detection of such changes in response to neoadjuvant chemotherapy and potentially be useful for routine breast cancer screening and diagnosis. IVBaR was employed in a new method of automated estimation of tumor volume in studies following the radiologist identification of the tumor region in the prechemotherapy scan. The authors have also introduced a new semiautomated method for validation of registration based on Doppler ultrasound (U.S.) signals that are independent of the grayscale signals used for registration. This Institutional Review Board approved study was conducted on 10 patients undergoing chemotherapy and 14 patients with a suspicious/unknown mass scheduled to undergo biopsy. Reasonably reproducible mammographic positioning and nearly whole breast U.S. imaging were achieved. The image volume was registered offline with a mutual information cost function and global interpolation based on a thin-plate spline using MIAMI FUSE software developed at the University of Michigan. The success and accuracy of registration of the three dimensional (3D) U.S. image volume were measured by means of mean registration error (MRE). IVBaR was successful with MRE of 4.3 +/- 1.7 mm in 9 out of 10 reproducibility automated breast ultrasound (ABU) studies and in 12 out of 17 ABU image pairs collected before, during, or after 115 +/- 14 days of chemotherapy. Semiautomated tumor volume estimation was performed on registered image volumes giving 86 +/- 8% mean accuracy compared to the radiologist hand-segmented tumor volume on seven cases. Doppler studies yielded fractional volume of color pixels in the region surrounding the lesion and its change with changing breast compression. The Doppler study of patients with detectable blood flow included five patients with suspicious masses and three undergoing chemotherapy. Spatial alignment of the 3D blood vessel data from the Doppler studies provided independent measures for the validation of registration. In 15 Doppler image volume pairs scanned with differing breast compression, the mean centerline separation value was 1.5 +/- 0.6 mm, while MRE based on a few identifiable structural points common to the two grayscale image volumes was 1.1 +/- 0.6 mm. Another measure, the overlap ratio of blood vessels, was shown to increase from 0.32 to 0.59 (+84%) with IVBaR for pairs at various compression levels. These results show that successful registration of ABU scans may be accomplished for comparison and integration of information.


Journal of Applied Clinical Medical Physics | 2016

Commissioning an Elekta Versa HD linear accelerator

Ganesh Narayanasamy; D Saenz; Wilbert Cruz; Chul S. Ha; N Papanikolaou; Sotirios Stathakis

The purpose of this study is to report the dosimetric aspects of commissioning performed on an Elekta Versa HD linear accelerator (linac) with high‐dose‐rate flattening filter‐free (FFF) photon modes and electron modes. Acceptance and commissioning was performed on the Elekta Versa HD linac with five photon energies (6 MV, 10 MV, 18 MV, 6 MV FFF, 10 MV FFF), four electron energies (6 MeV, 9 MeV, 12 MeV, 15 MeV) and 160‐leaf (5 mm wide) multileaf collimators (MLCs). Mechanical and dosimetric data were measured and evaluated. The measurements include percent depth doses (PDDs), in‐plane and cross‐plane profiles, head scatter factor (Sc), relative photon output factors (Scp), universal wedge transmission factor, MLC transmission factors, and electron cone factors. Gantry, collimator, and couch isocentricity measurements were within 1 mm, 0.7 mm, and 0.7 mm diameter, respectively. The PDDs of 6 MV FFF and 10 MV FFF beams show deeper dmax and steeper falloff with depth than the corresponding flattened beams. While flatness values of 6 MV FFF and 10 MV FFF normalized profiles were expectedly higher than the corresponding flattened beams, the symmetry values were almost identical. The cross‐plane penumbra values were higher than the in‐plane penumbra values for all the energies. The MLC transmission values were 0.5%, 0.6%, and 0.6% for 6 MV, 10 MV, and 18 MV photon beams, respectively. The electron PDDs, profiles, and cone factors agree well with the literature. The outcome of radiation treatment is directly related to the accuracy in the dose modeled in the treatment planning system, which is based on the commissioned data. Commissioning data provided us a valuable insight into the dosimetric characteristics of the beam. This set of commissioning data can provide comparison data to others performing Versa HD commissioning, thereby improving patient safety. PACS number(s): 87.56.bdThe purpose of this study is to report the dosimetric aspects of commissioning performed on an Elekta Versa HD linear accelerator (linac) with high-dose-rate flattening filter-free (FFF) photon modes and electron modes. Acceptance and commissioning was performed on the Elekta Versa HD linac with five photon energies (6 MV, 10 MV, 18 MV, 6 MV FFF, 10 MV FFF), four electron energies (6 MeV, 9 MeV, 12 MeV, 15 MeV) and 160-leaf (5 mm wide) multileaf collimators (MLCs). Mechanical and dosimetric data were measured and evaluated. The measurements include percent depth doses (PDDs), in-plane and cross-plane profiles, head scatter factor (Sc), relative photon output factors (Scp), universal wedge transmission factor, MLC transmission factors, and electron cone factors. Gantry, collimator, and couch isocentricity measurements were within 1 mm, 0.7 mm, and 0.7 mm diameter, respectively. The PDDs of 6 MV FFF and 10 MV FFF beams show deeper dmax and steeper falloff with depth than the corresponding flattened beams. While flatness values of 6 MV FFF and 10 MV FFF normalized profiles were expectedly higher than the corresponding flattened beams, the symmetry values were almost identical. The cross-plane penumbra values were higher than the in-plane penumbra values for all the energies. The MLC transmission values were 0.5%, 0.6%, and 0.6% for 6 MV, 10 MV, and 18 MV photon beams, respectively. The electron PDDs, profiles, and cone factors agree well with the literature. The outcome of radiation treatment is directly related to the accuracy in the dose modeled in the treatment planning system, which is based on the commissioned data. Commissioning data provided us a valuable insight into the dosimetric characteristics of the beam. This set of commissioning data can provide comparison data to others performing Versa HD commissioning, thereby improving patient safety. PACS number(s): 87.56.bd.


Technology in Cancer Research & Treatment | 2017

A Systematic Analysis of 2 Monoisocentric Techniques for the Treatment of Multiple Brain Metastases

Ganesh Narayanasamy; Sotirios Stathakis; A Gutiérrez; Evangelos Pappas; Richard L. Crownover; John R. Floyd; N Papanikolaou

Background: In this treatment planning study, we compare the plan quality and delivery parameters for the treatment of multiple brain metastases using 2 monoisocentric techniques: the Multiple Metastases Element from Brainlab and the RapidArc volumetric-modulated arc therapy from Varian Medical Systems. Methods: Eight patients who were treated in our institution for multiple metastases (3-7 lesions) were replanned with Multiple Metastases Element using noncoplanar dynamic conformal arcs. The same patients were replanned with the RapidArc technique in Eclipse using 4 noncoplanar arcs. Both techniques were designed using a single isocenter. Plan quality metrics (conformity index, homogeneity index, gradient index, and R50%), monitor unit, and the planning time were recorded. Comparison of the Multiple Metastases Element and RapidArc plans was performed using Shapiro-Wilk test, paired Student t test, and Wilcoxon signed rank test. Results: A paired Wilcoxon signed rank test between Multiple Metastases Element and RapidArc showed comparable plan quality metrics and dose to brain. Mean ± standard deviation values of conformity index were 1.8 ± 0.7 and 1.7 ± 0.6, homogeneity index were 1.3 ± 0.1 and 1.3 ± 0.1, gradient index were 5.0 ± 1.8 and 5.1 ± 1.9, and R50% were 4.9 ± 1.8 and 5.0 ± 1.9 for Multiple Metastases Element and RapidArc plans, respectively. Mean brain dose was 2.3 and 2.7 Gy for Multiple Metastases Element and RapidArc plans, respectively. The mean value of monitor units in Multiple Metastases Element plan was 7286 ± 1065, which is significantly lower than the RapidArc monitor units of 9966 ± 1533 (P < .05). Conclusion: For the planning of multiple brain lesions to be treated with stereotactic radiosurgery, Multiple Metastases Element planning software produced equivalent conformity, homogeneity, dose falloff, and brain V12 Gy but required significantly lower monitor units, when compared to RapidArc plans.


Computer Methods and Programs in Biomedicine | 2014

γ+ index

Sotirios Stathakis; Panayiotis Mavroidis; Chengyu Shi; Jun Xu; Kevin I. Kauweloa; Ganesh Narayanasamy; N Papanikolaou

PURPOSE The accuracy of dose delivery and the evaluation of differences between calculated and delivered dose distributions, has been studied by several groups. The aim of this investigation is to extend the gamma index by including radiobiological information and to propose a new index that we will here forth refer to as the gamma plus (γ+). Furthermore, to validate the robustness of this new index in performing a quality control analysis of an IMRT treatment plan using pure radiobiological measures such as the biologically effective uniform dose (D) and complication-free tumor control probability (P+). MATERIAL AND METHODS A new quality assurance index, the (γ+), is proposed based on the theoretical concept of gamma index presented by Low et al. (1998). In this study, the dose difference, including the radiobiological dose information (biological effective dose, BED) is used instead of just the physical dose difference when performing the γ+ calculation. An in-house software was developed to compare different dose distributions based on the γ+ concept. A test pattern for a two-dimensional dose comparison was built using the in-house software platform. The γ+ index was tested using planar dose distributions (exported from the treatment planning system) and delivered (film) dose distributions acquired in a solid water phantom using a test pattern and a theoretical clinical case. Furthermore, a lung cancer case for a patient treated with IMRT was also selected for the analysis. The respective planar dose distributions from the treatment plan and the film were compared based on the γ+ index and were evaluated using the radiobiological measures of P+ and D. RESULTS The results for the test pattern analysis indicate that the γ+ index distributions differ from those of the gamma index since the former considers radiobiological parameters that may affect treatment outcome. For the theoretical clinical case, it is observed that the γ+ index varies for different treatment parameters (e.g. dose per fraction). The dose area histogram (DAH) from the plan and film dose distributions are associated with P+ values of 50.8% and 49.0%, for a D to the target of 54.0 Gy and 53.3 Gy, respectively. CONCLUSION The γ+ index shows advantageous properties in the quantitative evaluation of dose delivery and quality control of IMRT treatments because it includes information about the expected responses and radiobiological doses of the individual tissues.


Journal of Applied Clinical Medical Physics | 2016

Pinnacle3 modeling and end-to-end dosimetric testing of a Versa HD linear accelerator with the Agility head and flattening filter-free modes.

D Saenz; Ganesh Narayanasamy; Wilbert Cruz; Nikos Papanikolaou; Sotirios Stathakis

The Elekta Versa HD incorporates a variety of upgrades to the line of Elekta linear accelerators, primarily including the Agility head and flattening filter-free (FFF) photon beam delivery. The completely distinct dosimetric output of the head from its predecessors, combined with the FFF beams, requires a new investigation of modeling in treatment planning systems. A model was created in Pinnacle3 v9.8 with the commissioned beam data. A phantom consisting of several plastic water and Styrofoam slabs was scanned and imported into Pinnacle3 , where beams of different field sizes, source-to-surface distances (SSDs), wedges, and gantry angles were devised. Beams included all of the available photon energies (6, 10, 18, 6 FFF, and 10 FFF MV), as well as the four electron energies commissioned for clinical use (6, 9, 12, and 15 MeV). The plans were verified at calculation points by measurement with a calibrated ionization chamber. Homogeneous and heterogeneous point-dose measurements agreed within 2% relative to maximum dose for all photon and electron beams. AP photon open field measurements along the central axis at 100 cm SSD passed within 1%. In addition, IMRT testing was also performed with three standard plans (step and shoot IMRT, as well as a small- and large-field VMAT plan). The IMRT plans were delivered on the Delta4 IMRT QA phantom, for which a gamma passing rate was >99.5% for all plans with a 3% dose deviation, 3 mm distance-to-agreement, and 10% dose threshold. The IMRT QA results for the first 23 patients yielded gamma passing rates of 97.4%±2.3%. Such testing ensures confidence in the ability of Pinnacle3 to model photon and electron beams with the Agility head. PACS numbers: 87.55.D, 87.56.bd.The Elekta Versa HD incorporates a variety of upgrades to the line of Elekta linear accelerators, primarily including the Agility head and flattening filter‐free (FFF) photon beam delivery. The completely distinct dosimetric output of the head from its predecessors, combined with the FFF beams, requires a new investigation of modeling in treatment planning systems. A model was created in Pinnacle3 v9.8 with the commissioned beam data. A phantom consisting of several plastic water and Styrofoam slabs was scanned and imported into Pinnacle3, where beams of different field sizes, source‐to‐surface distances (SSDs), wedges, and gantry angles were devised. Beams included all of the available photon energies (6, 10, 18, 6 FFF, and 10 FFF MV), as well as the four electron energies commissioned for clinical use (6, 9, 12, and 15 MeV). The plans were verified at calculation points by measurement with a calibrated ionization chamber. Homogeneous and heterogeneous point‐dose measurements agreed within 2% relative to maximum dose for all photon and electron beams. AP photon open field measurements along the central axis at 100 cm SSD passed within 1%. In addition, IMRT testing was also performed with three standard plans (step and shoot IMRT, as well as a small‐ and large‐field VMAT plan). The IMRT plans were delivered on the Delta4 IMRT QA phantom, for which a gamma passing rate was >99.5% for all plans with a 3% dose deviation, 3 mm distance‐to‐agreement, and 10% dose threshold. The IMRT QA results for the first 23 patients yielded gamma passing rates of 97.4%±2.3%. Such testing ensures confidence in the ability of Pinnacle3 to model photon and electron beams with the Agility head. PACS numbers: 87.55.D, 87.56.bd


international conference of the ieee engineering in medicine and biology society | 2007

Non-rigid registration of three-dimensional (3D) grayscale and Doppler ultrasound breast images

Ganesh Narayanasamy; Gerald L. LeCarpentier; Zabuawala S; Fowlkes Jb; Marilyn A. Roubidoux; Sumedha P. Sinha; Paul L. Carson

The purpose of this study is to evaluate the accuracy of image volume based registration (IVBaR) of 3D ultrasound (US) image volumes of the whole breast acquired at different times. Successful IVBaR could aid in detection of tumor changes in response to neoadjuvant chemotherapy and potentially be useful for routine breast cancer screening and diagnosis. IVBaR was successful in 9 of 10 reproducibility studies, 11 of 15 image pairs collected before and after approximately 45 days of chemotherapy. Doppler study yielded volume of blood flow to the region surrounding the lesion and its change when reducing breast compression. The color flow vessels provided independent measures for validation of registration of the grayscale portion of those images.


Acta Oncologica | 2017

Therapeutic benefits in grid irradiation on Tomotherapy for bulky, radiation-resistant tumors

Ganesh Narayanasamy; X Zhang; Ali S. Meigooni; N Paudel; S Morrill; Sanjay Maraboyina; Loverd Peacock; J Penagaricano

Abstract Introduction: Spatially fractionated radiation therapy (SFRT or grid therapy) has proven to be effective in management of bulky tumors. The aim of this project is to study the therapeutic ratio (TR) of helical Tomotherapy (HT)-based grid therapy using linear–quadratic cell survival model. Material and Methods: HT-based grid (or HT-GRID) plan was generated using a patient-specific virtual grid pattern of high-dose cylindrical regions using MLCs. TR was defined as the ratio of normal tissue surviving fraction (SF) under HT-GRID irradiation to an open debulking field of an equivalent dose that result in the same tumor cell SF. TR was estimated from DVH data on ten HT-GRID patient plans with deep seated, bulky tumor. Dependence of the TR values on radiosensitivity of the tumor cells and prescription dose was analyzed. Results: The mean ± standard deviation (SD) of TR was 4.0 ± 0.7 (range: 3.1–5.5) for the 10 patients with single fraction maximum dose of 20 Gy to GTV assuming a tumor cell SF at 2 Gy (SF2t) value of 0·5. In addition, the mean ± SD of TR values for SF2t values of 0.3 and 0.7 were found to be 1 ± 0.1 and 18.0 ± 5.1, respectively. Reducing the prescription dose to 15 and 10 Gy lowered the respective TR values to 2.0 ± 0.2 and 1.2 ± 0.04 for a SF2t value of 0.5. Conclusion: HT-GRID therapy demonstrates a significant therapeutic advantage over uniform dose from an open field irradiation for the same tumor cell kill. TR increases with the radioresistance of the tumor cells and with prescription dose.

Collaboration


Dive into the Ganesh Narayanasamy's collaboration.

Top Co-Authors

Avatar

Sotirios Stathakis

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

N Papanikolaou

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

J Penagaricano

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

S Morrill

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

X Zhang

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

N Paudel

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Wilbert Cruz

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

P Mavroidis

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nikos Papanikolaou

University of Texas Health Science Center at San Antonio

View shared research outputs
Researchain Logo
Decentralizing Knowledge