Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Soudamani Singh is active.

Publication


Featured researches published by Soudamani Singh.


American Journal of Physiology-cell Physiology | 2015

Chronic and selective inhibition of basolateral membrane Na-K-ATPase uniquely regulates brush border membrane Na absorption in intestinal epithelial cells.

Palanikumar Manoharan; Swapna Gayam; Subha Arthur; Balasubramanian Palaniappan; Soudamani Singh; Gregory M. Dick; Uma Sundaram

Na-K-ATPase, an integral membrane protein in mammalian cells, is responsible for maintaining the favorable intracellular Na gradient necessary to promote Na-coupled solute cotransport processes [e.g., Na-glucose cotransport (SGLT1)]. Inhibition of brush border membrane (BBM) SGLT1 is, at least in part, due to the diminished Na-K-ATPase in villus cells from chronically inflamed rabbit intestine. The aim of the present study was to determine the effect of Na-K-ATPase inhibition on the two major BBM Na absorptive pathways, specifically Na-glucose cotransport and Na/H exchange (NHE), in intestinal epithelial (IEC-18) cells. Na-K-ATPase was inhibited using 1 mM ouabain or siRNA for Na-K-ATPase-α1 in IEC-18 cells. SGLT1 activity was determined as 3-O-methyl-D-[(3)H]glucose uptake. Na-K-ATPase activity was measured as the amount of inorganic phosphate released. Treatment with ouabain resulted in SGLT1 inhibition at 1 h but stimulation at 24 h. To further characterize this unexpected stimulation of SGLT1, siRNA silencing was utilized to inhibit Na-K-ATPase-α1. SGLT1 activity was significantly upregulated by Na-K-ATPase silencing, while NHE3 activity remained unaltered. Kinetics showed that the mechanism of stimulation of SGLT1 activity was secondary to an increase in affinity of the cotransporter for glucose without a change in the number of cotransporters. Molecular studies demonstrated that the mechanism of stimulation was not secondary to altered BBM SGLT1 protein levels. Chronic and direct silencing of basolateral Na-K-ATPase uniquely regulates BBM Na absorptive pathways in intestinal epithelial cells. Specifically, while BBM NHE3 is unaffected, SGLT1 is stimulated secondary to enhanced affinity of the cotransporter.


Journal of Cellular and Molecular Medicine | 2018

Unique regulation of Na-glutamine cotransporter SN2/SNAT5 in rabbit intestinal crypt cells during chronic enteritis

Soudamani Singh; Subha Arthur; Uma Sundaram

The only Na‐nutrient cotransporter described in mammalian small intestinal crypt cells is SN2/SNAT5, which facilitates glutamine uptake. In a rabbit model of chronic intestinal inflammation, SN2 stimulation is secondary to an increase in affinity of the cotransporter for glutamine. However, the immune regulation of SN2 in the crypt cells during chronic intestinal inflammation is unknown. We sought to determine the mechanism of regulation of Na‐nutrient cotransporter SN2 by arachidonic acid metabolites in crypt cells. The small intestines of New Zealand white male rabbits were inflamed via inoculation with Eimeria magna oocytes. After 2‐week incubation, control and inflamed rabbits were subjected to intramuscular injections of arachidonyl trifluoromethyl ketone (ATK), piroxicam and MK886 for 48 hrs. After injections, the rabbits were euthanized and crypt cells from small intestines were harvested and used. Results: Treatment of rabbits with ATK prevented the release of AA and reversed stimulation of SN2. Inhibition of cyclooxygenase (COX) with piroxicam did not affect stimulation of SN2. However, inhibition of lipoxygenase (LOX) with MK886, thus reducing leukotriene formation during chronic enteritis, reversed the stimulation of SN2. Kinetic studies showed that the mechanism of restoration of SN2 by ATK or MK886 was secondary to the restoration of the affinity of the cotransporter for glutamine. For all treatment conditions, Western blot analysis revealed no change in SN2 protein levels. COX inhibition proved ineffective at reversing the stimulation of SN2. Thus, this study provides evidence that SN2 stimulation in crypt cells is mediated by the leukotriene pathway during chronic intestinal inflammation.


Cells | 2018

Inducible Nitric Oxide Regulates Brush Border Membrane Na-Glucose Co-transport, but Not Na:H Exchange via p38 MAP Kinase in Intestinal Epithelial Cells

Palanikumar Manoharan; Shanmuga Sundaram; Soudamani Singh; Uma Sundaram

During chronic intestinal inflammation in rabbit intestinal villus cells brush border membrane (BBM) Na-glucose co-transport (SGLT1), but not Na/H exchange (NHE3) is inhibited. The mechanism of inhibition is secondary to a decrease in the number of BBM co-transporters. In the chronic enteritis mucosa, inducible nitric oxide (iNO) and superoxide production are known to be increased and together they produce abundant peroxynitrite (OONO), a potent oxidant. However, whether OONO mediates the SGLT1 and NHE3 changes in intestinal epithelial cells during chronic intestinal inflammation is unknown. Thus, we determined the effect of OONO on SGLT1 and NHE3 in small intestinal epithelial cell (IEC-18) monolayers grown on trans well plates. In cells treated with 100 μM SIN-1 (OONO donor) for 24 h, SGLT1 was inhibited while NHE3 activity was unaltered. SIN-1 treated cells produced 40 times more OONO fluorescence compared to control cells. Uric acid (1mM) a natural scavenger of OONO prevented the OONO mediated SGLT1 inhibition. Na+/K+-ATPase which maintains the favorable trans-cellular Na gradient for Na-dependent absorptive processes was decreased by OONO. Kinetics studies demonstrated that the mechanism of inhibition of SGLT1 by OONO was secondary to reduction in the number of co-transporters (Vmax) without an alteration in the affinity. Western blot analysis showed a significant decrease in SGLT1 protein expression. Further, p38 mitogen-activated protein (MAP) kinase pathway appeared to mediate the OONO inhibition of SGLT1. Finally, at the level of the co-transporter, 3-Nitrotyrosine formation appears to be the mechanism of inhibition of SGLT1. In conclusion, peroxynitrite inhibited BBM SGLT1, but not NHE3 in intestinal epithelial cells. These changes and the mechanism of SGLT1 inhibition by OONO in IEC-18 cells is identical to that seen in villus cells during chronic enteritis. Thus, these data indicate that peroxynitrite, known to be elevated in the mucosa, may mediate the inhibition of villus cell BBM SGLT1 in vivo in the chronically inflamed intestine.


PLOS ONE | 2018

Cyclooxygenase pathway mediates the inhibition of Na-glutamine co-transporter B0AT1 in rabbit villus cells during chronic intestinal inflammation

Subha Arthur; Soudamani Singh; Uma Sundaram

In the mammalian intestine, glutamine assimilation by the absorptive villus cells is mediated by Na-glutamine co-transport, specifically by B0AT1. In a rabbit model of chronic intestinal inflammation, B0AT1 is inhibited secondary to a decrease in the number of co-transporters in the brush border membrane (BBM). This inhibition can be reversed by treatment with a broad-spectrum immune modulator such as glucocorticoid suggesting that immune inflammatory mediators may regulate B0AT1 during chronic intestinal inflammation. Arachidonic acid (AA) metabolites (AAM) are increased during chronic intestinal inflammation. However, whether AAM may regulate B0AT1 during chronic intestinal inflammation is unknown. Treatment of rabbits with ATK, to prevent the release of AAM reversed the inhibition of B0AT1. AAM are products of cyclooxygenase (COX) and/or lipoxygenase (LOX) pathways. Inhibition of COX with piroxicam, therefore reduction of prostaglandin formation in the chronically inflamed intestine, reversed the inhibition of B0AT1 to its normal levels. In contrast, inhibition of LOX with MK886, thus reduction of leukotriene formation during chronic enteritis, did not affect the inhibition of B0AT1. Kinetic studies showed that the mechanism of restoration of B0AT1 by ATK or piroxicam was secondary to the restoration of BBM co-transporter numbers. Western Blot analysis also demonstrated restoration of BBM B0AT1 co-transporter numbers. In conclusion, this study demonstrates that Na-glutamine co-transport mediated by B0AT1 in villus cells is regulated by prostaglandins rather than leukotrienes in the chronically inflamed intestine.


Gastroenterology | 2014

Su1887 Mechanism of Inhibition of Na-Glutamine Co-Transport by Prostaglandin E2 in Intestinal Epithelial Cells

Soudamani Singh; Subha Arthur; Uma Sundaram

generate PCTV to transport the chylomicron from ER to Golgi. The chylomicron output into lymph is correlated to intestinal luminal phosphatidylcholine (PC). Luminal PC is absorbed as lyso-phosphatidylcholine (lyso-PC). We previously showed that the dietary lipids are absorbed from the apical membrane by Caveolin-1 containing Cytosolic Endocytic Vesicles (CEV). We tested the hypothesis that lyso-PC activates the PKCζ; detach it from CEV, enabling PKCζ to phosphorylate Sar1b. Methods: Cytosol was isolated from rats whose intestinal PC was altered by (A) bile diversion, no PC (B) saline infusion, low PC (C) chow fed, normal PC (D) fat fed, high PC and (E) PC infusion, very high PC. PKCζ activity was measured by phosphorylation of PKCζ pseudo substrate. Lyso-PC was measured by HPLC. Results: PKCζ was activated by lyso-PC, non-linear regression curve for PKCζ vs. lyso-PC, calculated as Km=1.49 ± 0.244 nM and Vmax = 1.12 ± 1.058 nM. The amount of cytosolic lyso-PC in A to E ranges from 0 to 0.45 nM, suggesting that the amount of cytosolic lysoPC is always within a range to control PKCζ activation. PKCζ activity ranges from 0 to 0.7 Arbitrary Unit in A to E. Post absorptive CEV contain PKCζ by western blot but PKCζ detachment from the CEV is proportional to cytosolic lyso-PC as estimated by western blot of CEV. Biotinylation of r-PKCζ showed a conformational change on activation by lyso-PC. We conclude that PKCζ on CEV was activated by lyso-PC, changes its conformation and eluted from vesicles, enter into the cytosol and phosphorylate Sar1b, split the heteroquatramer protein complex to release FABP1. Now free FABP1 can bind to ER membrane for PCTV formation, which transports chylomicrons from ER to Golgi. Fig. 1 illustrated the scheme for control of dietary lipid transport.


BMC Gastroenterology | 2015

Mast cell regulation of Na-glutamine co-transporters B0AT1 in villus and SN2 in crypt cells during chronic intestinal inflammation

Soudamani Singh; Subha Arthur; Jamilur Talukder; Balasubramanian Palaniappan; Steven Coon; Uma Sundaram


Gastroenterology | 2018

32 - Mechanism of Regulation of Na-Glutamine Co-Transport by Adipose Derived Secretome in Intestinal Epithelial Cells During Obesity

Soudamani Singh; Kathiresh Mani; Shanmuga Sundaram; Justin Tomblin; Uma Sundaram


Gastroenterology | 2018

Su1983 - Alcohol Uniquely Regulates Sodium-Glutamine Co-Transport in Intestinal Epithelial Cells

Molly R. Butts; Soudamani Singh; Uma Sundaram


Gastroenterology | 2017

Physiological Stimulation of Constitutive Nitric Oxide Uniquely Regulates NA-Glucose Co-Transport in Rabbit Intestinal Villus Cells

Balasubramanian Palaniappan; Subha Arthur; Soudamani Singh; Uma Sundaram


Gastroenterology | 2017

Mechanism of Regulation of NA-Glucose Co-Transport by Adipose Derived Secretome in Intestinal Epithelial Cells

Uma Sundaram; Soudamani Singh; Justin Tomblin; Molly R. Butts; Kathiresh Mani

Collaboration


Dive into the Soudamani Singh's collaboration.

Top Co-Authors

Avatar

Uma Sundaram

University of Rochester

View shared research outputs
Top Co-Authors

Avatar

Subha Arthur

West Virginia University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ramesh Kekuda

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Swapna Gayam

West Virginia University

View shared research outputs
Researchain Logo
Decentralizing Knowledge