Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Uma Sundaram is active.

Publication


Featured researches published by Uma Sundaram.


Biochemical Pharmacology | 2003

Rabbit chronic ileitis leads to up-regulation of adenosine A1/A3 gene products, oxidative stress, and immune modulation.

Uma Sundaram; Hamdy H. Hassanain; Zacharias Suntres; Jun Ge Yu; Helen J. Cooke; Jorge Guzman; Fievos L. Christofi

A rabbit model of chronic ileitis has helped decipher the mechanism of alteration of multiple electrolyte and nutrient malabsorptions in inflammatory bowel disease (IBD). This study examined alterations in the adenosine A1/A3 receptor, oxidant, antioxidant, and immune-inflammatory pathways in chronic ileitis. Chronic ileal inflammation was induced 13-15 days after infection with 10,000 Eimeria magna oocytes. Quantitative analysis in 16 rabbits was done for oxidants, antioxidants, A1 and A3 transcripts, transport, injury, and inflammatory mediators. Inflamed gut had villus blunting, crypt hyperplasia and fusion, and immune cell infiltration. Alkaline phosphatase and Na-glucose co-transport were reduced by 78% (P=0.001) and 89% (P=0.001), respectively. Real-time fluorescence monitoring (TaqMan)-polymerase chain reaction revealed a transcriptional up-regulation of 1.34-fold for A1 and 5.40-fold for A3 receptors in inflamed gut. Lipid peroxidation increased in the mucosa (78%, P=0.012), longitudinal muscle-myenteric plexus (118%, P=0.042), and plasma (104%, P=0.001). Mucosal antioxidants were altered by inflammation: reductions occurred in superoxide dismutase (32%, P=0.001) and catalase (43%, P=0.001), whereas increases occurred in glutathione (75%, P=0.0271) and glutathione reductase (86%, P=0.0007). Oxidant enzyme activities were elevated by 21% for xanthine oxidase (P=0.004), 172% for chloramine (P=0.022), 47% for gelatinase (P=0.041), and 190% for myeloperoxidase (P=0.002). Mast cell tryptase increased by 79% (P=0.006). Increases occurred in the plasma concentration of leukotriene B(4) (13-fold, P=0.003), thromboxane B(2) (61-fold, P=0.018), and tumor necrosis factor-alpha (9-fold, P=0.002). In conclusion, chronic ileitis and tissue injury are associated with discrete alterations in complex multi-level oxidant, antioxidant, and immune inflammatory components. The rabbit ileitis model is a suitable model to gain further insight into chronic inflammation and IBD. We hypothesize that adenosine A3 and A1 receptors may provide a novel target for therapy in chronic ileitis and perhaps IBD.


Biochimica et Biophysica Acta | 2012

Na-glutamine co-transporters B0AT1 in villus and SN2 in crypts are differentially altered in chronically inflamed rabbit intestine

Prosenjit Saha; Subha Arthur; Ramesh Kekuda; Uma Sundaram

Glutamine is a major nutrient utilized by the intestinal epithelium and is primarily assimilated via Na-glutamine co-transport (NGcT) on the brush border membrane (BBM) of enterocytes. Recently we reported that B(0)AT1 (SLC6A19) mediates glutamine absorption in villus while SN2 (SLC38A5) does the same in crypt cells. However, how B(0)AT1 and SN2 are affected during intestinal inflammation is unknown. In the present study it was shown that during chronic enteritis NGcT was inhibited in villus cells, however, it was stimulated in crypt cells. Our studies also demonstrated that the mechanism of inhibition of NGcT during chronic enteritis was secondary to a reduction in the number of B(0)AT1 co-transporters in the villus cell BBM without a change in the affinity of the co-transporter. In contrast, stimulation of NGcT in crypt cells was secondary to an increase in the affinity of SN2 for glutamine without an alteration in the number of co-transporters. Thus, glutamine assimilation which occurs via distinct transporters in crypt and villus cells is altered in the chronically inflamed intestine.


Inflammatory Bowel Diseases | 2012

Regulation of sodium-glutamine cotransport in villus and crypt cells by glucocorticoids during chronic enteritis

Subha Arthur; Prosenjit Saha; Shanmuga Sundaram; Ramesh Kekuda; Uma Sundaram

Background: Assimilation of the preferred nutrient of enterocytes is mediated primarily by sodium (Na)‐dependent cotransport (NGct) in the intestine. The predominant NGcT in villus cells, B0AT1, is inhibited secondary to a decrease in cotransporter numbers during chronic intestinal inflammation. In contrast, NGcT mediated by SN2 in crypt cells is stimulated secondary to increased affinity of the cotransporter for glutamine during chronic ileitis. Glucocorticoid is a mainstay of treatment for inflammatory bowel disease. However, its effect on NGcT is not known. Methods: The inhibition of B0AT1 in villus cells during chronic intestinal inflammation was reversed back to normal by methylprednisolone (MP). This was secondary to the restoration of the cotransporter numbers in the brush border membrane rather than an alteration in the affinity. The stimulation of NGcT in crypt cells during chronic ileitis was also restored back to its normal levels by MP treatment. This reversal was secondary to the restoration of the altered affinity of the cotransporter SN2 for glutamine. Results: Kinetic studies and western blot analysis were consistent with functional studies for both cotransporters. Thus, glucocorticoids restore two uniquely altered Na‐glutamine cotransporters, B0AT1 in villus and SN2 in crypt cells during chronic enteritis. Conclusions: These data indicate that glucocorticoids function as an upstream broad spectrum immune modulator in the chronically inflamed intestine. (Inflamm Bowel Dis 2012;)


American Journal of Physiology-gastrointestinal and Liver Physiology | 2008

Mechanism of leukotriene D4 inhibition of Na-alanine cotransport in intestinal epithelial cells.

Jamilur R. Talukder; Ramesh Kekuda; Prosenjit Saha; Uma Sundaram

In a rabbit model of chronic intestinal inflammation, we previously demonstrated inhibition of neutral Na-amino acid cotransport. The mechanism of the inhibition was secondary to a decrease in the affinity for amino acid rather than the number of cotransporters. Since leukotriene (LT)D4 is known to be elevated in enterocytes during chronic intestinal inflammation, we used rat intestinal epithelial cell (IEC-18) monolayers to determine the mechanism of regulation of Na-alanine cotransport (alanine, serine, cysteine transporter 1: ASCT1) by LTD4. Na-alanine cotransport was inhibited by LTD4 in IEC-18 cells. The mechanism of inhibition of ASCT1 (solute carrier, SLC1A4) by LTD4 is secondary to a decrease in the affinity of the cotransporter for alanine without a significant change in cotransporter numbers and is not secondary to an alteration in the Na+ extruding capacity of the cells. Real-time quantitative PCR and Western blot analysis results indicate that ASCT1 message and protein levels are also unchanged in LTD4-treated IEC-18 cells. These results indicate that LTD4 inhibits Na-dependent neutral amino acid cotransport in IEC. The mechanism of inhibition is secondary to a decrease in the affinity for alanine, which is identical to that seen in villus cells from the chronically inflamed rabbit small intestine, where LTD4 levels are significantly increased.


Journal of Clinical Gastroenterology | 2003

Celecoxib associated esophagitis: review of gastrointestinal side effects from cox-2 inhibitors.

Parvez S. Mantry; Ashok N. Shah; Uma Sundaram

BACKGROUND With the extensive use of COX-2 inhibitors to treat inflammatory and pain syndromes, gastrointestinal adverse effects are being increasingly observed. CASE REPORT An 87-year-old white man with chronic peptic esophageal stricture presented to us with dysphagia and odynophagia. The patient was taking Celecoxib for 5 months for trigeminal neuralgia. An upper endoscopy revealed severe desquamative esophagitis. Celecoxib was discontinued and the patient was started on esomeprazole. The patients symptoms improved in 1 month. Three months later, EGD revealed complete healing of the esophageal mucosa. DISCUSSION Because recent studies have shown that COX-2 inhibitors are similar to NSAIDs with regards to absorption, in contrast to premarketing trials, extensive use of COX-2 inhibitors is likely to demonstrate gastrointestinal adverse effects similar to those caused by traditional NSAIDs. Our patient had severe esophagitis caused by Celecoxib and aggravated by reflux of achlorhydric gastric contents after dilatation of the stricture. SUMMARY We report for the first time severe esophagitis caused by the COX-2 inhibitor Celecoxib.


American Journal of Physiology-cell Physiology | 2011

Reciprocal regulation of the primary sodium absorptive pathways in rat intestinal epithelial cells

Steven Coon; Ramesh Kekuda; Prosenjit Saha; Uma Sundaram

Sodium absorption in the mammalian small intestine occurs predominantly by two primary pathways that include Na/H exchange (NHE3) and Na-glucose cotransport (SGLT1) on the brush border membrane (BBM) of villus cells. However, whether NHE3 and SGLT1 function together to regulate intestinal sodium absorption is unknown. Nontransformed small intestinal epithelial cells (IEC-18) were transfected with either NHE3 or SGLT1 small interfering RNAs (siRNAs) and were grown in confluent monolayers on transwell plates to measure the effects on Na absorption. Uptake studies were performed as well as molecular studies to determine the effects on NHE3 and SGLT1 activity. When IEC-18 monolayers were transfected with silencing NHE3 RNA, the cells demonstrated decreased NHE3 activity as well as decreased NHE3 mRNA and protein. However, in NHE3 siRNA-transected cells, SGLT1 activity, mRNA, and protein in the BBM were significantly increased. Thus, inhibition of NHE3 expression regulates the expression and function of SGLT1 in the BBM of intestinal epithelial cells. In addition, IEC-18 cells transected with silencing SGLT1 RNA demonstrated an inhibition of Na-dependent glucose uptake and a decrease in SGLT1 activity, mRNA, and protein levels. However, in these cells, Na/H exchange activity was significantly increased. Furthermore, NHE3 mRNA and protein levels were also increased. Therefore, the inhibition of SGLT1 expression stimulates the transcription and function of NHE3 and vice versa in the BBM of intestinal epithelial cells. Thus this study demonstrates that the major sodium absorptive pathways together function to regulate sodium absorption in epithelial cells.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2010

Glucocorticoids differentially regulate Na-bile acid cotransport in normal and chronically inflamed rabbit ileal villus cells

Steven Coon; Ramesh Kekuda; Prosenjit Saha; Uma Sundaram

Previous studies have demonstrated that apical Na-bile acid cotransport (ASBT) is inhibited during chronic ileitis by both a decrease in the affinity as well as a decrease in the number of cotransporters. Methylprednisolone (MP), a commonly used treatment for inflammatory bowel disease (IBD, e.g., Crohns disease), has been shown to reverse the inhibition of several other Na-solute cotransporters during chronic enteritis. However, the effect of MP on ASBT in the chronically inflamed ileum is not known. MP stimulated ASBT in villus cells from the normal rabbit ileum by increasing the cotransporter expression without a change in the affinity of the cotransporter for bile acid. Western blot studies demonstrated an increase in cotransporter expression. MP reversed the inhibition of ASBT in villus cells from the chronically inflamed ileum. Kinetic studies demonstrated that the mechanism of MP-mediated reversal of ASBT inhibition was secondary to a restoration of both affinity as well as cotransporter numbers. Western blot analysis demonstrated restoration of cotransporter numbers after MP treatment of rabbits with chronic ileitis. Thus MP stimulates ASBT in the normal ileum by increasing cotransporter numbers. MP reverses the inhibition of ASBT during chronic ileitis. However, MP restores the diminished affinity as well as cotransporter expression levels during chronic ileitis. Thus MP differentially regulates ASBT in the normal and in the chronically inflamed ileum.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2008

Functional characterization, localization, and molecular identification of rabbit intestinal N-amino acid transporter

Jamilur R. Talukder; Ramesh Kekuda; Prosenjit Saha; Puttur D. Prasad; Vadivel Ganapathy; Uma Sundaram

We have characterized the Na-glutamine cotransporter in the rabbit intestinal crypt cell brush border membrane vesicles (BBMV). Substrate specificity experiments showed that crypt cell glutamine uptake is mediated by system N. Real-time PCR experiments showed that SN2 (SLC38A5) mRNA is more abundant in crypt cells compared with SN1 (SLC38A3), indicating that SN2 is the major glutamine transporter present in the apical membrane of the crypt cells. SN2 cDNA was obtained by screening a rabbit intestinal cDNA library with human SN1 used as probe. Rabbit SN2 cDNA encompassed a 473-amino-acid-long open reading frame. SN2 protein displayed 87% identity and 91% similarity to human SN2. Functional characterization studies of rabbit SN2 were performed by using vaccinia virus-mediated transient expression system. Substrate specificity of the cloned transporter was identical to that of SN2 described in the literature and matched well with substrate specificity experiments performed using crypt cell BBMV. Cloned rabbit SN2, analogous to its human counterpart, is Li(+) tolerant. Hill coefficient for Li(+) activation of rabbit SN2-mediated uptake was 1. Taken together, functional data from the crypt cell BBMV and the cloned SN2 cDNA indicate that the crypt cell glutamine transport is most likely mediated by SN2.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2008

Role of Sp1 and HNF1 transcription factors in SGLT1 regulation during chronic intestinal inflammation

Ramesh Kekuda; Prosenjit Saha; Uma Sundaram

In a rabbit model of chronic intestinal inflammation, we previously demonstrated that the activity of Na-glucose cotransporter (SGLT1), SLC5A1, is inhibited. This inhibition is secondary to a decrease in the number of cotransporters, indicating that the regulation of SGLT1 during chronic inflammation is at the level of transcription. However, the regulation of SGLT1 expression and the transcription factors involved in the regulation are not yet known. In this report, we describe the cloning and characterization of rabbit SGLT1 promoter and the identification of transcription factors affected in villus cells during chronic intestinal inflammation. The promoter sequence for SGLT1 gene was identified by using the publicly available rabbit genomic sequence. Even though rabbit SGLT1 promoter did not have considerable overall homology with other mammalian SGLT1 promoters, two specificity protein 1 (Sp1) and a hepatocyte nuclear factor 1 (HNF1) binding sites were highly conserved among the species. Rabbit SGLT1 cDNA was encoded by 15 exons. Minimal promoter region determination showed that 196 nucleotides upstream of the transcription start site were sufficient for optimal promoter activity. This region encompassed two transcription factor binding sites, Sp1 and HNF1. For maximal SGLT1 promoter activity, these two transcription factor binding sites were essential, and their effect was synergistic, indicating that two separate regulatory pathways might be involved in their regulation. Using mobility shift assays, we further demonstrated that the binding of both Sp1 and HNF1 transcription factors to SGLT1 promoter regions were affected during chronic intestinal inflammation. Thus this report demonstrates that Sp1 and HNF1 transcription factors act in concert to regulate SGLT1 transcription in the chronically inflamed intestine.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2008

Constitutive nitric oxide differentially regulates Na-H and Na-glucose cotransport in intestinal epithelial cells

Steven Coon; Ramesh Kekuda; Prosenjit Saha; Jamilur R. Talukder; Uma Sundaram

Previous in vivo studies suggest that constitutive nitric oxide (cNO) can regulate Na- glucose cotransport (SGLT1) and Na-H exchange (NHE3) in rabbit intestinal villus cells. Whether these two primary Na absorbing pathways are directly regulated by cNO and the mechanisms of this regulation in the enterocyte is not known. Thus nontransformed rat small intestinal epithelial cells (IEC-18) were treated with N(G)-nitro-l-arginine methyl ester (l-NAME), which directly decreased cNO in these cells. l-NAME treatment decreased SGLT1 in IEC-18 cells. Kinetic studies demonstrated that the mechanism of inhibition was secondary to a decrease in the affinity of the cotransporter for glucose without a change in the number of cotransporters. In contrast, l-NAME treatment increased NHE3 in IEC-18 cells. Kinetic studies demonstrated that the mechanism of stimulation was by increasing the number of the exchangers without a change in the affinity for Na. Quantitative RT-PCR (RTQ-PCR) and Western blot analysis of SGLT1 demonstrated no change in mRNA and protein, respectively. RTQ-PCR and Western blot analysis of NHE3 indicated that NHE3 was increased by l-NAME treatment by an increase in mRNA and protein, respectively. These results indicate that decreased cNO levels directly mediate the inhibition of SGLT1 and stimulation of NHE3 in intestinal epithelial cells. Thus cNO directly but uniquely regulates the two primary Na-absorptive pathways in the mammalian small intestine.

Collaboration


Dive into the Uma Sundaram's collaboration.

Top Co-Authors

Avatar

Subha Arthur

West Virginia University

View shared research outputs
Top Co-Authors

Avatar

Ramesh Kekuda

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Prosenjit Saha

West Virginia University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashok N. Shah

University of Rochester Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge