Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Soumya Deo is active.

Publication


Featured researches published by Soumya Deo.


Journal of Biological Chemistry | 2013

Binding of G-quadruplexes to the N-terminal recognition domain of the RNA helicase associated with AU-rich element (RHAU).

Markus Meier; Trushar R. Patel; Evan P. Booy; Oksana Marushchak; Natalie Okun; Soumya Deo; Ryan Howard; Kevin McEleney; Stephen E. Harding; Jörg Stetefeld; Sean A. McKenna

Background: The helicase RHAU requires an N-terminal extension to bind quadruplex structures. Results: This extension adopts an elongated shape and interacts with the guanine tetrad face of quadruplexes. Conclusion: We provide a basis for the understanding of quadruplex binding by the N-terminal domain. Significance: The N-terminal region does not require the 2′-OH of the ribose to mediate the protein-quadruplex interaction. Polynucleotides containing consecutive tracts of guanines can adopt an intramolecular G-quadruplex structure where multiple planar tetrads of hydrogen-bound guanines stack on top of each other. Remodeling of G-quadruplexes impacts numerous aspects of nucleotide biology including transcriptional and translational control. RNA helicase associated with AU-rich element (RHAU), a member of the ATP-dependent DEX(H/D) family of RNA helicases, has been established as a major cellular quadruplex resolvase. RHAU contains a core helicase domain responsible for ATP binding/hydrolysis/helicase activity and is flanked on either side by N- and C-terminal extensions. The N-terminal extension is required for quadruplex recognition, and we have previously demonstrated complex formation between this domain and a quadruplex from human telomerase RNA. Here we used an integrated approach that includes small angle x-ray scattering, nuclear magnetic resonance spectroscopy, circular dichroism, and dynamic light scattering methods to demonstrate the recognition of G-quadruplexes by the N-terminal domain of RHAU. Based on our results, we conclude that (i) quadruplex from the human telomerase RNA and its DNA analog both adopt a disc shape in solution, (ii) RHAU53–105 adopts a defined and extended conformation in solution, and (iii) the N-terminal domain mediates an interaction with a guanine tetrad face of quadruplexes. Together, these data form the foundation for understanding the recognition of quadruplexes by the N-terminal domain of RHAU.


Nucleic Acids Research | 2014

The RNA helicase RHAU (DHX36) suppresses expression of the transcription factor PITX1

Evan P. Booy; Ryan Howard; Oksana Marushchak; Emmanuel O. Ariyo; Markus Meier; Stefanie K. Novakowski; Soumya Deo; Edis Dzananovic; Jörg Stetefeld; Sean A. McKenna

RNA Helicase associated with AU-rich element (RHAU) (DHX36) is a DEAH (Aspartic acid, Glumatic Acid, Alanine, Histidine)-box RNA helicase that can bind and unwind G4-quadruplexes in DNA and RNA. To detect novel RNA targets of RHAU, we performed an RNA co-immunoprecipitation screen and identified the PITX1 messenger RNA (mRNA) as specifically and highly enriched. PITX1 is a homeobox transcription factor with roles in both development and cancer. Primary sequence analysis identified three probable quadruplexes within the 3′-untranslated region of the PITX1 mRNA. Each of these sequences, when isolated, forms stable quadruplex structures that interact with RHAU. We provide evidence that these quadruplexes exist in the endogenous mRNA; however, we discovered that RHAU is tethered to the mRNA via an alternative non–quadruplex-forming region. RHAU knockdown by small interfering RNA results in significant increases in PITX1 protein levels with only marginal changes in mRNA, suggesting a role for RHAU in translational regulation. Involvement of components of the microRNA machinery is supported by similar and non-additive increases in PITX1 protein expression on Dicer and combined RHAU/Dicer knockdown. We also demonstrate a requirement of argonaute-2, a key RNA-induced silencing complex component, to mediate RHAU-dependent changes in PITX1 protein levels. These results demonstrate a novel role for RHAU in microRNA-mediated translational regulation at a quadruplex-containing 3′-untranslated region.


Angewandte Chemie | 2016

Adjuvants Based on Hybrid Antibiotics Overcome Resistance in Pseudomonas aeruginosa and Enhance Fluoroquinolone Efficacy

Bala Kishan Gorityala; Goutam Guchhait; Dinesh M. Fernando; Soumya Deo; Sean A. McKenna; George G. Zhanel; Ayush Kumar; Frank Schweizer

The use of adjuvants that rescue antibiotics against multidrug-resistant (MDR) pathogens is a promising combination strategy for overcoming bacterial resistance. While the combination of β-lactam antibiotics and β-lactamase inhibitors has been successful in restoring antibacterial efficacy in MDR bacteria, the use of adjuvants to restore fluoroquinolone efficacy in MDR Gram-negative pathogens has been challenging. We describe tobramycin-ciprofloxacin hybrid adjuvants that rescue the activity of fluoroquinolone antibiotics against MDR and extremely drug-resistant Pseudomonas aeruginosa isolates in vitro and enhance fluoroquinolone efficacy in vivo. Structure-activity studies reveal that the presence of both tobramycin and ciprofloxacin, which are separated by a C12 tether, is critical for the function of the adjuvant. Mechanistic studies indicate that the antibacterial modes of ciprofloxacin are retained while the role of tobramycin is limited to destabilization of the outer membrane in the hybrid.


RNA | 2013

Recognition of viral RNA stem-loops by the tandem double-stranded RNA binding domains of PKR.

Edis Dzananovic; Trushar R. Patel; Soumya Deo; Kevin McEleney; Jörg Stetefeld; Sean A. McKenna

In humans, the double-stranded RNA (dsRNA)-activated protein kinase (PKR) is expressed in late stages of the innate immune response to viral infection by the interferon pathway. PKR consists of tandem dsRNA binding motifs (dsRBMs) connected via a flexible linker to a Ser/Thr kinase domain. Upon interaction with viral dsRNA, PKR is converted into a catalytically active enzyme capable of phosphorylating a number of target proteins that often results in host cell translational repression. A number of high-resolution structural studies involving individual dsRBMs from proteins other than PKR have highlighted the key features required for interaction with perfectly duplexed RNA substrates. However, viral dsRNA molecules are highly structured and often contain deviations from perfect A-form RNA helices. By use of small-angle X-ray scattering (SAXS), we present solution conformations of the tandem dsRBMs of PKR in complex with two imperfectly base-paired viral dsRNA stem-loops; HIV-1 TAR and adenovirus VA(I)-AS. Both individual components and complexes were purified by size exclusion chromatography and characterized by dynamic light scattering at multiple concentrations to ensure monodispersity. SAXS ab initio solution conformations of the individual components and RNA-protein complexes were determined and highlight the potential of PKR to interact with both stem and loop regions of the RNA. Excellent agreement between experimental and model-based hydrodynamic parameter determination heightens our confidence in the obtained models. Taken together, these data support and provide a framework for the existing biochemical data regarding the tolerance of imperfectly base-paired viral dsRNA by PKR.


PLOS ONE | 2014

Activation of 2' 5'-oligoadenylate synthetase by stem loops at the 5'-end of the West Nile virus genome.

Soumya Deo; Trushar R. Patel; Edis Dzananovic; Evan P. Booy; Khalid Zeid; Kevin McEleney; Stephen E. Harding; Sean A. McKenna

West Nile virus (WNV) has a positive sense RNA genome with conserved structural elements in the 5′ and 3′ -untranslated regions required for polyprotein production. Antiviral immunity to WNV is partially mediated through the production of a cluster of proteins known as the interferon stimulated genes (ISGs). The 2′ 5′-oligoadenylate synthetases (OAS) are key ISGs that help to amplify the innate immune response. Upon interaction with viral double stranded RNA, OAS enzymes become activated and enable the host cell to restrict viral propagation. Studies have linked mutations in the OAS1 gene to increased susceptibility to WNV infection, highlighting the importance of OAS1 enzyme. Here we report that the region at the 5′-end of the WNV genome comprising both the 5′-UTR and initial coding region is capable of OAS1 activation in vitro. This region contains three RNA stem loops (SLI, SLII, and SLIII), whose relative contribution to OAS1 binding affinity and activation were investigated using electrophoretic mobility shift assays and enzyme kinetics experiments. Stem loop I, comprising nucleotides 1-73, is dispensable for maximum OAS1 activation, as a construct containing only SLII and SLIII was capable of enzymatic activation. Mutations to the RNA binding site of OAS1 confirmed the specificity of the interaction. The purity, monodispersity and homogeneity of the 5′-end (SLI/II/III) and OAS1 were evaluated using dynamic light scattering and analytical ultra-centrifugation. Solution conformations of both the 5′-end RNA of WNV and OAS1 were then elucidated using small-angle x-ray scattering. In the context of purified components in vitro, these data demonstrate the recognition of conserved secondary structural elements of the WNV genome by a member of the interferon-mediated innate immune response.


Journal of Structural Biology | 2014

Solution conformation of adenovirus virus associated RNA-I and its interaction with PKR

Edis Dzananovic; Trushar R. Patel; Grzegorz Chojnowski; Michal Boniecki; Soumya Deo; Kevin McEleney; Stephen E. Harding; Janusz M. Bujnicki; Sean A. McKenna

Adenovirus virus-associated RNA (VAI) provides protection against the host antiviral response in part by inhibiting the interferon-induced double stranded RNA-activated protein kinase (PKR). VAI consists of three base-paired regions; the apical stem responsible for the interaction with double-stranded RNA binding motifs (dsRBMs) of PKR, the central stem required for inhibition, and the terminal stem. The solution conformation of VAI and VAI lacking the terminal stem were determined using SAXS that suggested extended conformations that are in agreement with their secondary structures. Solution conformations of VAI lacking the terminal stem in complex with the dsRBMs of PKR indicated that the apical stem interacts with both dsRNA-binding motifs whereas the central stem does not. Hydrodynamic properties calculated from ab initio models were compared to experimentally determined parameters for model validation. Furthermore, SAXS envelopes were used as a constraint for the in silico modeling of tertiary structure for RNA and RNA-protein complex. Finally, full-length PKR was also studied, but concentration-dependent changes in hydrodynamic parameters prevented ab initio shape determination. Taken together, results provide an improved structural framework that further our understanding of the role VAI plays in evading host innate immune responses.


Journal of Biological Chemistry | 2016

RNA Helicase Associated with AU-rich Element (RHAU/DHX36) Interacts with the 3'-Tail of the Long Non-coding RNA BC200 (BCYRN1).

Evan P. Booy; Ewan K. S. McRae; Ryan Howard; Soumya Deo; Emmanuel O. Ariyo; Edis Dzananovic; Markus Meier; Jörg Stetefeld; Sean A. McKenna

RNA helicase associated with AU-rich element (RHAU) is an ATP-dependent RNA helicase that demonstrates high affinity for quadruplex structures in DNA and RNA. To elucidate the significance of these quadruplex-RHAU interactions, we have performed RNA co-immunoprecipitation screens to identify novel RNAs bound to RHAU and characterize their function. In the course of this study, we have identified the non-coding RNA BC200 (BCYRN1) as specifically enriched upon RHAU immunoprecipitation. Although BC200 does not adopt a quadruplex structure and does not bind the quadruplex-interacting motif of RHAU, it has direct affinity for RHAU in vitro. Specifically designed BC200 truncations and RNase footprinting assays demonstrate that RHAU binds to an adenosine-rich region near the 3′-end of the RNA. RHAU truncations support binding that is dependent upon a region within the C terminus and is specific to RHAU isoform 1. Tests performed to assess whether BC200 interferes with RHAU helicase activity have demonstrated the ability of BC200 to act as an acceptor of unwound quadruplexes via a cytosine-rich region near the 3′-end of the RNA. Furthermore, an interaction between BC200 and the quadruplex-containing telomerase RNA was confirmed by pull-down assays of the endogenous RNAs. This leads to the possibility that RHAU may direct BC200 to bind and exert regulatory functions at quadruplex-containing RNA or DNA sequences.


PLOS ONE | 2017

Impact of the structural integrity of the three-way junction of adenovirus VAI RNA on PKR inhibition

Edis Dzananovic; Astha; Grzegorz Chojnowski; Soumya Deo; Evan P. Booy; Pauline Padilla-Meier; Kevin McEleney; Janusz M. Bujnicki; Trushar R. Patel; Sean A. McKenna

Highly structured RNA derived from viral genomes is a key cellular indicator of viral infection. In response, cells produce the interferon inducible RNA-dependent protein kinase (PKR) that, when bound to viral dsRNA, phosphorylates eukaryotic initiation factor 2α and attenuates viral protein translation. Adenovirus can evade this line of defence through transcription of a non-coding RNA, VAI, an inhibitor of PKR. VAI consists of three base-paired regions that meet at a three-way junction; an apical stem responsible for the interaction with PKR, a central stem required for inhibition, and a terminal stem. Recent studies have highlighted the potential importance of the tertiary structure of the three-way junction to PKR inhibition by enabling interaction between regions of the central and terminal stems. To further investigate the role of the three-way junction, we characterized the binding affinity and inhibitory potential of central stem mutants designed to introduce subtle alterations. These results were then correlated with small-angle X-ray scattering solution studies and computational tertiary structural models. Our results demonstrate that while mutations to the central stem have no observable effect on binding affinity to PKR, mutations that appear to disrupt the structure of the three-way junction prevent inhibition of PKR. Therefore, we propose that instead of simply sequestering PKR, a specific structural conformation of the PKR-VAI complex may be required for inhibition.


Journal of Molecular Biology | 2012

Regulation of the Interferon‐Inducible 2′–5′-Oligoadenylate Synthetases by Adenovirus VAI RNA

Hui Meng; Soumya Deo; Shawn Xiong; Edis Dzananovic; Lynda J. Donald; Cody W. van Dijk; Sean A. McKenna


Journal of Structural Biology | 2015

Characterization of the termini of the West Nile virus genome and their interactions with the small isoform of the 2′ 5′-oligoadenylate synthetase family

Soumya Deo; Trushar R. Patel; Grzegorz Chojnowski; Amit Koul; Edis Dzananovic; Kevin McEleney; Janusz M. Bujnicki; Sean A. McKenna

Collaboration


Dive into the Soumya Deo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ryan Howard

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Oksana Marushchak

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge