Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Soyoung Shin is active.

Publication


Featured researches published by Soyoung Shin.


Journal of Cellular Biochemistry | 2016

Arctigenin Inhibits Adipogenesis by Inducing AMPK Activation and Reduces Weight Gain in High-Fat Diet-Induced Obese Mice.

Yo-Han Han; Ji-Ye Kee; Jinbong Park; Hye-Lin Kim; Mi-Young Jeong; Dae-Seung Kim; Yong-Deok Jeon; Yunu Jung; Dong-Hyun Youn; JongWook Kang; Hong-Seob So; Raekil Park; Jong-Hyun Lee; Soyoung Shin; Su-Jin Kim; Jae-Young Um; Seung-Heon Hong

Although arctigenin (ARC) has been reported to have some pharmacological effects such as anti‐inflammation, anti‐cancer, and antioxidant, there have been no reports on the anti‐obesity effect of ARC. The aim of this study is to investigate whether ARC has an anti‐obesity effect and mediates the AMP‐activated protein kinase (AMPK) pathway. We investigated the anti‐adipogenic effect of ARC using 3T3‐L1 pre‐adipocytes and human adipose tissue‐derived mesenchymal stem cells (hAMSCs). In high‐fat diet (HFD)‐induced obese mice, whether ARC can inhibit weight gain was investigated. We found that ARC reduced weight gain, fat pad weight, and triglycerides in HFD‐induced obese mice. ARC also inhibited the expression of peroxisome proliferator‐activated receptor gamma (PPARγ) and CCAAT/enhancer‐binding protein alpha (C/EBPα) in in vitro and in vivo. Furthermore, ARC induced the AMPK activation resulting in down‐modulation of adipogenesis‐related factors including PPARγ, C/EBPα, fatty acid synthase, adipocyte fatty acid‐binding protein, and lipoprotein lipase. This study demonstrates that ARC can reduce key adipogenic factors by activating the AMPK in vitro and in vivo and suggests a therapeutic implication of ARC for obesity treatment. J. Cell. Biochem. 117: 2067–2077, 2016.


Xenobiotica | 2014

Pharmacokinetics and metabolite profiling of fimasartan, a novel antihypertensive agent, in rats

Tae Hwan Kim; Soyoung Shin; Mohammad Bashir; Yong Ha Chi; Soo Heui Paik; Joo Han Lee; Hyuk Joon Choi; Jin Ho Choi; Sun Dong Yoo; Jürgen B. Bulitta; Eunsook Ma; Sang Hoon Joo; Beom Soo Shin

Abstract 1. The objectives of this study were to evaluate the pharmacokinetics and metabolism of fimasartan in rats. 2. Unlabeled fimasartan or radiolabeled [14C]fimasartan was dosed by intravenous injection or oral administration to rats. Concentrations of unlabeled fimasartan in the biological samples were determined by a validated LC/MS/MS assay. Total radioactivity was quantified by liquid scintillation counting and the radioactivity associated with the metabolites was analyzed by using the radiochemical detector. Metabolite identification was conducted by product ion scanning using LC/MS/MS. 3. After oral administration of [14C]fimasartan, total radioactivity was found primarily in feces. In bile duct cannulated rats, 58.8 ± 14.4% of the radioactive dose was excreted via bile after oral dosing. Major metabolites of fimasartan including the active metabolite, desulfo-fimasartan, were identified, yet none represented more than 7.2% of the exposure of the parent drug. Fimasartan was rapidly and extensively absorbed and had an oral bioavailability of 32.7–49.6% in rats. Fimasartan plasma concentrations showed a multi-exponential decline after oral administration. Double peaks and extended terminal half-life were observed, which was likely caused by enterohepatic recirculation. 4. These results provide better understanding on the pharmacokinetics of fimasartan and may aid further development of fimasartan analogs.


Journal of Chromatography B | 2013

Liquid chromatography-tandem mass spectrometry determination of baclofen in various biological samples and application to a pharmacokinetic study.

Tae Hwan Kim; Soyoung Shin; Jeong Cheol Shin; Jin Ho Choi; Won Sik Seo; Gi-Young Park; Dong Rak Kwon; Sun Dong Yoo; Ah-Ram Lee; Sang Hoon Joo; Byung Sun Min; Won Young Yoo; Beom Soo Shin

Baclofen is a structural analogue of γ-aminobutyric acid (GABA) that has been used for the treatment of spasticity since 1977. This study describes a simple and sensitive LC/MS/MS assay for the quantification of baclofen in rat plasma, urine, as well as various tissue samples. The assay utilized a simple protein precipitation and achieved lower limit of quantification (LLOQ) of 0.25ng/mL for rat plasma and brain samples and 2ng/mL for rat urine, liver and kidney samples. The assay was validated to demonstrate the specificity, linearity, recovery, LLOQ, accuracy, precision, and stability by using matrix matched quality control samples. There is no endogenous or exogenous peaks interfering with the analytes and matrix effects were minimized by optimized separation condition. The assay was linear over a concentration range of 0.25-500ng/mL for rat plasma and brain tissue, and 2-5000ng/mL for rat urine, kidney and liver with correlation coefficients >0.999. The mean intra- and inter-day assay accuracies were 94.6-104.6 and 96.0-103.6%, respectively. The mean intra- and inter-day precisions were 5.71 and 5.70%, respectively. The developed assay was successfully applied to a pharmacokinetic study and examined urinary excretion and tissue distribution of baclofen in rats following intravenous and oral administration.


Talanta | 2015

Determination of acrylamide and glycidamide in various biological matrices by liquid chromatography-tandem mass spectrometry and its application to a pharmacokinetic study.

Tae Hwan Kim; Soyoung Shin; Kyu Bong Kim; Won Sik Seo; Jeong Cheol Shin; Jin Ho Choi; Kwon-Yeon Weon; Sang Hoon Joo; Seok Won Jeong; Beom Soo Shin

Acrylamide (AA) is a heat-generated food toxicant formed when starchy foods are fried or baked. This study describes a simple and sensitive liquid chromatography-tandem mass spectrometry assay for the simultaneous quantification of AA and its active metabolite, glycidamide (GA) in rat plasma, urine, and 14 different tissues. The assay utilized a simple method of protein precipitation and achieved a lower limit of quantification of 5, 10 and 25 ng/mL of AA and 10, 20 and 100 ng/mL of GA for plasma, tissues and urine, respectively. The assay was fully validated to demonstrate the linearity, sensitivity, accuracy, precision, process recovery, and stability using matrix matched quality control samples. The mean intra- and inter-day assay accuracy was 91.6-110% for AA and 92.0-109% for GA, and the mean intra- and inter-day assay precisions were ≤ 10.9% for AA and ≤ 8.60% for GA. The developed method was successfully applied to a pharmacokinetic study of AA and GA following intravenous and oral administration of AA in rats. Tissue distribution characteristics of AA and GA were also determined under steady-state conditions.


European Journal of Pharmacology | 2015

Loganin protects against pancreatitis by inhibiting NF-κB activation.

Myoung-Jin Kim; Gi-Sang Bae; Il-Joo Jo; Sun-Bok Choi; Dong-Goo Kim; Joon-Yeon Shin; Sung-Kon Lee; Min-Jun Kim; Soyoung Shin; Ho-Joon Song; Sung-Joo Park

Acute pancreatitis (AP) is an inflammatory disease of the pancreas, which, in its most severe form, is associated with multi-organ failure and death. Loganin, a major iridoid glycoside obtained from Corni fructus, has been shown to have anti-inflammatory and anti-shock effects. However, the effects of loganin on AP have not been determined. Pre-treatment of loganin reduced pancreatic damage and AP-associated lung injury and attenuated the severity of AP, as evidenced by (1) a reduction in several biochemical parameters (pancreatic weight to body weight ratio, myeloperoxidase activity, and level of amylase) and (2) production of pro-inflammatory cytokines such as interleukin (IL)-1β and tumor necrosis factor (TNF)-α. However, post-treatment of loganin failed to improve pancreatic damage and biochemical parameters of AP, but could inhibit the AP-induced elevation of IL-1β and TNF-α significantly. In addition, cerulein-induced activation of nuclear factor (NF)-κB was inhibited in the pancreas by administration of loganin. In conclusion, these results suggest that loganin exhibits an anti-inflammatory effect in cases of AP and its pulmonary complications through inhibition of NF-κB activation.


Molecular Medicine Reports | 2015

Lysophosphatidic acid increases the proliferation and migration of adipose‑derived stem cells via the generation of reactive oxygen species

Sangjin Kang; Juhee Han; Seung Yong Song; Won Serk Kim; Soyoung Shin; Ji Hye Kim; Hyosun Ahn; Jin‑Hyun Jeong; Sung-Joo Hwang; Jong Hyuk Sung

Phospholipid derivatives, such as lysophosphatidic acid (LPA), exhibit mitogenic effects on mesenchymal stem cells; however, the molecular mechanism underlying this stimulation has yet to be identified. The aims of the present study were as follows: To evaluate the stimulatory effects of LPA on the proliferation and migration of adipose‑derived stem cells (ASCs); to study the association between reactive oxygen species (ROS) and LPA signaling in ASCs; and to investigate the microRNAs upregulated by LPA treatment in ASCs. The results of the present study demonstrated that LPA increased the proliferation and migration of ASCs, and acted as a mitogenic signal via extracellular signal‑regulated kinases 1/2 and the phosphoinositide 3‑kinase/Akt signaling pathways. The LPA1 receptor is highly expressed in ASCs, and pharmacological inhibition of it by Ki16425 significantly attenuated the proliferation and migration of ASCs. In addition, LPA treatment generated ROS via NADPH oxidase 4, and ROS were able to function as signaling molecules to increase the proliferation and migration of ASCs. The induction of ROS by LPA treatment also upregulated the expression of miR‑210. A polymerase chain reaction array assay demonstrated that the expression levels of adrenomedullin and Serpine1 were increased following treatment with LPA. Furthermore, transfection with Serpine1‑specific small interfering RNA attenuated the migration of ASCs. In conclusion, the present study is the first, to the best of our knowledge, to report that ROS generation and miR‑210 expression are associated with the LPA‑induced stimulation of ASCs, and that Serpine1 mediates the LPA‑induced migration of ASCs. These results further suggest that LPA may be used for ASC stimulation during stem cell expansion.


Stem Cells Translational Medicine | 2015

Megestrol Acetate Increases the Proliferation, Migration, and Adipogenic Differentiation of Adipose-Derived Stem Cells via Glucocorticoid Receptor

Jong Hyuk Sung; Hyo Sun An; Jin‑Hyun Jeong; Soyoung Shin; Seung Yong Song

Because adipose‐derived stem cells (ASCs) are usually expanded to acquire large numbers of cells for therapeutic applications, it is important to increase the production yield and regenerative potential during expansion. Therefore, a tremendous need exists for alternative ASC stimuli during cultivation to increase the proliferation and adipogenic differentiation of ASCs. The present study primarily investigated the involvement of megestrol acetate (MA), a progesterone analog, in the stimulation of ASCs, and identifies the target receptors underlying stimulation. Mitogenic and adipogenic effects of MA were investigated in vitro, and pharmacological inhibition and small interfering (si) RNA techniques were used to identify the molecular mechanisms involved in the MA‐induced stimulation of ASCs. MA significantly increased the proliferation, migration, and adipogenic differentiation of ASCs in a dose‐dependent manner. Glucocorticoid receptor (GR) is highly expressed compared with other nuclear receptors in ASCs, and this receptor is phosphorylated after MA treatment. MA also upregulated genes downstream of GR in ASCs, including ANGPTL4, DUSP1, ERRF11, FKBP5, GLUL, and TSC22D3. RU486, a pharmacological inhibitor of GR, and transfection of siGR significantly attenuated MA‐induced proliferation, migration, and adipogenic differentiation of ASCs. Although the adipogenic differentiation potential of MA was inferior to that of dexamethasone, MA had mitogenic effects in ASCs. Collectively, these results indicate that MA increases the proliferation, migration, and adipogenic differentiation of ASCs via GR phosphorylation.


Archives of Pharmacal Research | 2012

Pharmacokinetics and tissue distribution of psammaplin A, a novel anticancer agent, in mice.

Hak Jae Kim; Tae Hwan Kim; Won Sik Seo; Sun Dong Yoo; Il Han Kim; Sang Hoon Joo; Soyoung Shin; Eun-Seok Park; Eun Sook Ma; Beom Soo Shin

This study reports the pharmacokinetics and tissue distribution of a novel histone deacetylase and DNA methyltransferase inhibitor, psammaplin A (PsA), in mice. PsA concentrations were determined by a validated LC-MS/MS assay method (LLOQ 2 ng/mL). Following intravenous injection at a dose of 10 mg/kg in mice, PsA was rapidly eliminated, with the average half-life (t1/2, λn) of 9.9 ± 1.4 min and the systemic clearance (CLs) of 925.1 ± 570.1 mL/min. The in vitro stability of PsA was determined in different tissue homogenates. The average degradation t1/2 of PsA in blood, liver, kidney and lung was found relatively short (≤ 12.8 min). Concerning the in vivo tissue distribution characteristics, PsA was found to be highly distributed to lung tissues, with the lung-to-serum partition coefficients (Kp) ranging from 49.9 to 60.2. In contrast, PsA concentrations in other tissues were either comparable with or less than serum concentrations. The high and specific lung targeting characteristics indicates that PsA has the potential to be developed as a lung cancer treatment agent.


Evidence-based Complementary and Alternative Medicine | 2014

Pharmacokinetic Alteration of Baclofen by Multiple Oral Administration of Herbal Medicines in Rats

Tae Hwan Kim; Gi Young Park; Soyoung Shin; Dong Rak Kwon; Won Sik Seo; Jeong Cheol Shin; Jin Ho Choi; Sang Hoon Joo; Kwon Yeon Weon; Byung Sun Min; Kyung Min Baek; Mahesh Upadhyay; Bing Tian Zhao; Mi Hee Woo; So Hee Kwon; Beom Soo Shin

The potential pharmacokinetic (PK) interaction of conventional western drug, baclofen, and oriental medications Oyaksungisan (OY) and Achyranthes bidentata radix (AB) extract for the treatment of spasticity has been evaluated. Rats were pretreated with distilled water (DW), OY, or AB extract by oral administration every day for 7 days. After 10 min of the final dose of DW or each herbal medication, baclofen (1 mg/kg) was given by oral administration and plasma concentrations of baclofen were determined by LC/MS/MS. The plasma baclofen concentration-time profiles were then analyzed by noncompartmental analysis and a population PK model was developed. Baclofen was rapidly absorbed, showed biexponential decline with elimination half-life of 3.42–4.10 hr, and mostly excreted into urine. The PK of baclofen was not affected by AB extract pretreatment. However, significantly lower maximum plasma concentration (C max) and longer time to reach C max (T max) were observed in OY pretreated rats without changes in the area under the curve (AUC) and the fraction excreted into urine (F urine). The absorption rate (K a) of baclofen was significantly decreased in OY pretreated rats. These data suggested that repeated doses of OY might delay the absorption of baclofen without changes in extent of absorption, which needs further evaluation for clinical significance.


Drug Metabolism and Disposition | 2014

Quantitative Determination of Absorption and First-Pass Metabolism of Apicidin, a Potent Histone Deacetylase Inhibitor

Beom Soo Shin; Sun Dong Yoo; Tae Hwan Kim; Jürgen B. Bulitta; Cornelia B. Landersdorfer; Jjeong Cheol Shin; Jin Ho Choi; Kwon-Yeon Weon; Sang Hoon Joo; Soyoung Shin

Apicidin, a potential oral chemotherapeutic agent, possesses potent anti-histone-deacetylase activity. After oral administration, the total bioavailability of apicidin is known to be low (14.2%–19.3%). In the present study, we evaluated the factors contributing to the low bioavailability of apicidin by means of quantitative determination of absorption fraction and first-pass metabolism after oral administration. Apicidin was given to rats by five different routes: into the femoral vein, duodenum, superior mesenteric artery, portal vein, and carotid artery. Especially, the fraction absorbed (FX) and the fraction that is not metabolized in the gut wall (FG) were separated by injection of apicidin via superior mesenteric artery, which enables bypassing the permeability barrier. The FX was 45.9% ± 9.7%, the FG was 70.9% ± 8.1% and the hepatic bioavailability (FH) was 70.6% ± 12.3%, while the pulmonary first-pass metabolism was minimal (FL = 102.8% ± 7.4%), indicating that intestinal absorption was the rate-determining step for oral absorption of apicidin. The low FX was further examined in terms of passive diffusion and transporter-mediated efflux by in vitro immobilized artificial membrane (IAM) chromatographic assay and in situ single-pass perfusion method, respectively. Although the passive diffusion potential of apicidin was high (98.01%) by the IAM assay, the in situ permeability was significantly enhanced by the presence of the P-glycoprotein (P-gp) inhibitor elacrider. These data suggest that the low bioavailability of apicidin was mainly attributed to the P-gp efflux consistent with the limited FX measured in vivo experiment.

Collaboration


Dive into the Soyoung Shin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tae Hwan Kim

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sang Hoon Joo

Catholic University of Daegu

View shared research outputs
Top Co-Authors

Avatar

Sun Dong Yoo

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar

Kwon-Yeon Weon

Catholic University of Daegu

View shared research outputs
Top Co-Authors

Avatar

Jin Ho Choi

Catholic University of Daegu

View shared research outputs
Top Co-Authors

Avatar

Seok Won Jeong

Catholic University of Daegu

View shared research outputs
Top Co-Authors

Avatar

Won Sik Seo

Catholic University of Daegu

View shared research outputs
Top Co-Authors

Avatar

Byung Sun Min

Catholic University of Daegu

View shared research outputs
Researchain Logo
Decentralizing Knowledge