Spyros Darmanis
Uppsala University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Spyros Darmanis.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Gholamreza Tavoosidana; Gunnar Ronquist; Spyros Darmanis; Junhong Yan; Lena Carlsson; Di Wu; Tim Conze; Pia Ek; Axel Semjonow; Elke Eltze; Anders Larsson; Ulf Landegren; Masood Kamali-Moghaddam
Prostasomes are microvesicles (mean diameter, 150 nm) that are produced and secreted by normal and malignant prostate acinar cells. It has been hypothesized that invasive growth of malignant prostate cells may cause these microvesicles, normally released into seminal fluid, to appear in interstitial space and therewith into peripheral circulation. The suitability of prostasomes as blood biomarkers in patients with prostate cancer was tested by using an expanded variant of the proximity ligation assay (PLA). We developed an extremely sensitive and specific assay (4PLA) for detection of complex target structures such as microvesicles in which the target is first captured via an immobilized antibody and subsequently detected by using four other antibodies with attached DNA strands. The requirement for coincident binding by five antibodies to generate an amplifiable reporter results in both increased specificity and sensitivity. The assay successfully detected significantly elevated levels of prostasomes in blood samples from patients with prostate cancer before radical prostatectomy, compared with controls and men with benign biopsy results. The medians for prostasome levels in blood plasma of patients with prostate cancer were 2.5 to sevenfold higher compared with control samples in two independent studies, and the assay also distinguished patients with high and medium prostatectomy Gleason scores (8/9 and 7, respectively) from those with low score (≤6), thus reflecting disease aggressiveness. This approach that enables detection of prostasomes in peripheral blood may be useful for early diagnosis and assessment of prognosis in organ-confined prostate cancer.
Molecular & Cellular Proteomics | 2010
Spyros Darmanis; Rachel Yuan Nong; Maria Hammond; Jijuan Gu; Anders Alderborn; Johan Vänelid; Agneta Siegbahn; Sigrun M. Gustafsdottir; Olle Ericsson; Ulf Landegren; Masood Kamali-Moghaddam
Detection of proteins released in the bloodstream from tissues damaged by disease can promote early detection of pathological conditions, differential diagnostics, and follow-up of therapy. Despite these prospects and a plethora of candidate biomarkers, efforts in recent years to establish new protein diagnostic assays have met with limited success. One important limiting factor has been the challenge of detecting proteins present at trace levels in complex bodily fluids. To achieve robust, sensitive, and specific detection, we have developed a microparticle-based solid-phase proximity ligation assay, dependent on simultaneous recognition of target proteins by three antibody molecules for added specificity. After capture on a microparticle, solid-phase pairs of proximity probes are added followed by washes, enabling detection and identification of rare protein molecules in blood while consuming small amounts of sample. We demonstrate that single polyclonal antibody preparations raised against target proteins of interest can be readily used to establish assays where detection depends on target recognition by three individual antibody molecules, recognizing separate epitopes. The assay was compared with state-of-the-art sandwich ELISAs for detection of vascular endothelial growth factor, interleukin-8 and interleukin-6, and it was found to be superior both with regard to dynamic range and minimal numbers of molecules detected. Furthermore, the assays exhibited excellent performance in undiluted plasma and serum as well as in whole blood, producing comparable results for nine different antigens. We thus show that solid-phase proximity ligation assay is suitable for validation of a variety of protein biomarkers over broad dynamic ranges in clinical samples.
PLOS ONE | 2011
Spyros Darmanis; Rachel Yuan Nong; Johan Vänelid; Agneta Siegbahn; Olle Ericsson; Simon Fredriksson; Christofer Bäcklin; Marta Gut; Simon Heath; Ivo Gut; Lars Wallentin; Mats G. Gustafsson; Masood Kamali-Moghaddam; Ulf Landegren
Despite intense interest, methods that provide enhanced sensitivity and specificity in parallel measurements of candidate protein biomarkers in numerous samples have been lacking. We present herein a multiplex proximity ligation assay with readout via realtime PCR or DNA sequencing (ProteinSeq). We demonstrate improved sensitivity over conventional sandwich assays for simultaneous analysis of sets of 35 proteins in 5 µl of blood plasma. Importantly, we observe a minimal tendency to increased background with multiplexing, compared to a sandwich assay, suggesting that higher levels of multiplexing are possible. We used ProteinSeq to analyze proteins in plasma samples from cardiovascular disease (CVD) patient cohorts and matched controls. Three proteins, namely P-selectin, Cystatin-B and Kallikrein-6, were identified as putative diagnostic biomarkers for CVD. The latter two have not been previously reported in the literature and their potential roles must be validated in larger patient cohorts. We conclude that ProteinSeq is promising for screening large numbers of proteins and samples while the technology can provide a much-needed platform for validation of diagnostic markers in biobank samples and in clinical use.
British Journal of Cancer | 2011
Ulrik Wallin; Bengt Glimelius; Karin Jirström; Spyros Darmanis; Rachel Yuan Nong; Fredrik Pontén; Christine Johansson; Lars Påhlman; Helgi Birgisson
Background:Growth differentiation factor 15 (GDF15) belongs to the transforming growth factor beta superfamily and has been associated with activation of the p53 pathway in human cancer. The aim of this study was to assess the prognostic value of GDF15 in patients with colorectal cancer (CRC).Methods:Immunohistochemistry and tissue microarrays were used to analyse GDF15 protein expression in 320 patients with CRC. In a subgroup of 60 patients, the level of GDF15 protein in plasma was also measured using a solid-phase proximity ligation assay.Results:Patients with CRC with moderate to high intensity of GDF15 immunostaining had a higher recurrence rate compared with patients with no or low intensity in all stages (stages I–III) (HR, 3.9; 95% CI, 1.16–13.15) and in stage III (HR, 10.32; 95% CI, 1.15–92.51). Patients with high plasma levels of GDF15 had statistically shorter time to recurrence (P=0.041) and reduced overall survival (P=0.002).Conclusion:Growth differentiation factor 15 serves as a negative prognostic marker in CRC. High expression of GDF15 in tumour tissue and high plasma levels correlate with an increased risk of recurrence and reduced overall survival.
Cell Reports | 2016
Spyros Darmanis; Caroline J. Gallant; Voichita D. Marinescu; Mia Niklasson; Anna Segerman; Georgios Flamourakis; Simon Fredriksson; Erika Assarsson; Martin Lundberg; Sven Nelander; Bengt Westermark; Ulf Landegren
Summary Significant advances have been made in methods to analyze genomes and transcriptomes of single cells, but to fully define cell states, proteins must also be accessed as central actors defining a cell’s phenotype. Methods currently used to analyze endogenous protein expression in single cells are limited in specificity, throughput, or multiplex capability. Here, we present an approach to simultaneously and specifically interrogate large sets of protein and RNA targets in lysates from individual cells, enabling investigations of cell functions and responses. We applied our method to investigate the effects of BMP4, an experimental therapeutic agent, on early-passage glioblastoma cell cultures. We uncovered significant heterogeneity in responses to treatment at levels of RNA and protein, with a subset of cells reacting in a distinct manner to BMP4. Moreover, we found overall poor correlation between protein and RNA at the level of single cells, with proteins more accurately defining responses to treatment.
Genome Biology | 2016
Alex S. Genshaft; Shuqiang Li; Caroline J. Gallant; Spyros Darmanis; Sanjay Prakadan; Carly G.K. Ziegler; Martin Lundberg; Simon Fredriksson; Joyce Hong; Aviv Regev; Kenneth J. Livak; Ulf Landegren; Alex K. Shalek
We present a scalable, integrated strategy for coupled protein and RNA detection from single cells. Our approach leverages the DNA polymerase activity of reverse transcriptase to simultaneously perform proximity extension assays and complementary DNA synthesis in the same reaction. Using the Fluidigm C1™ system, we profile the transcriptomic and proteomic response of a human breast adenocarcinoma cell line to a chemical perturbation, benchmarking against in situ hybridizations and immunofluorescence staining, as well as recombinant proteins, ERCC Spike-Ins, and population lysate dilutions. Through supervised and unsupervised analyses, we demonstrate synergies enabled by simultaneous measurement of single-cell protein and RNA abundances. Collectively, our generalizable approach highlights the potential for molecular metadata to inform highly-multiplexed single-cell analyses.
Nature Protocols | 2013
Rachel Yuan Nong; Di Wu; Junhong Yan; Maria Hammond; Gucci Jijuan Gu; Masood Kamali-Moghaddam; Ulf Landegren; Spyros Darmanis
Solid-phase proximity ligation assays share properties with the classical sandwich immunoassays for protein detection. The proteins captured via antibodies on solid supports are, however, detected not by single antibodies with detectable functions, but by pairs of antibodies with attached DNA strands. Upon recognition by these sets of three antibodies, pairs of DNA strands brought in proximity are joined by ligation. The ligated reporter DNA strands are then detected via methods such as real-time PCR or next-generation sequencing (NGS). We describe how to construct assays that can offer improved detection specificity by virtue of recognition by three antibodies, as well as enhanced sensitivity owing to reduced background and amplified detection. Finally, we also illustrate how the assays can be applied for parallel detection of proteins, taking advantage of the oligonucleotide ligation step to avoid background problems that might arise with multiplexing. The protocol for the singleplex solid-phase proximity ligation assay takes ∼5 h. The multiplex version of the assay takes 7–8 h depending on whether quantitative PCR (qPCR) or sequencing is used as the readout. The time for the sequencing-based protocol includes the library preparation but not the actual sequencing, as times may vary based on the choice of sequencing platform.
BMC Neuroscience | 2010
Masood Kamali-Moghaddam; Frida Ekholm Pettersson; Di Wu; Hillevi Englund; Spyros Darmanis; Anna Lord; Gholamreza Tavoosidana; Dag Sehlin; Sigrun M. Gustafsdottir; Lars Nilsson; Lars Lannfelt; Ulf Landegren
BackgroundProtein aggregation plays important roles in several neurodegenerative disorders. For instance, insoluble aggregates of phosphorylated tau and of Aβ peptides are cornerstones in the pathology of Alzheimers disease. Soluble protein aggregates are therefore potential diagnostic and prognostic biomarkers for their cognate disorders. Detection of the aggregated species requires sensitive tools that efficiently discriminate them from monomers of the same proteins. Here we have established a proximity ligation assay (PLA) for specific and sensitive detection of Aβ protofibrils via simultaneous recognition of three identical determinants present in the aggregates. PLA is a versatile technology in which the requirement for multiple target recognitions is combined with the ability to translate signals from detected target molecules to amplifiable DNA strands, providing very high specificity and sensitivity.ResultsFor specific detection of Aβ protofibrils we have used a monoclonal antibody, mAb158, selective for Aβ protofibrils in a modified PLA, where the same monoclonal antibody was used for the three classes of affinity reagents required in the assay. These reagents were used for detection of soluble Aβ aggregates in solid-phase reactions, allowing detection of just 0.1 pg/ml Aβ protofibrils, and with a dynamic range greater than six orders of magnitude. Compared to a sandwich ELISA setup of the same antibody the PLA increases the sensitivity of the Aβ protofibril detection by up to 25-fold. The assay was used to measure soluble Aβ aggregates in brain homogenates from mice transgenic for a human allele predisposing to Aβ aggregation.ConclusionsThe proximity ligation assay is a versatile analytical technology for proteins, which can provide highly sensitive and specific detection of Aβ aggregates - and by implication other protein aggregates of relevance in Alzheimers disease and other neurodegenerative disorders.
Expert Review of Proteomics | 2012
Rachel Yuan Nong; Jijuan Gu; Spyros Darmanis; Masood Kamali-Moghaddam; Ulf Landegren
Improved protein assays promise to offer new insights into biological processes as well as the identification of new, clinically important biomarkers. In recent years, a number of approaches have been developed where protein-binding reagents, typically antibodies, are equipped with DNA strands to enable protein analyses via powerful nucleic acid detection reactions for improved performance. In this review, we provide a background to this emerging field, and we describe several different ways in which these reagents can improve protein analyses by lowering detection thresholds, improving multiplexing and extending the range of biomolecules available for analysis, both in research settings and in clinical routine.
Biochimica et Biophysica Acta | 2014
Andries Blokzijl; Rachel Yuan Nong; Spyros Darmanis; E. Hertz; Ulf Landegren; Masood Kamali-Moghaddam
The ability to detect minute amounts of specific proteins or protein modifications in blood as biomarkers for a plethora of human pathological conditions holds great promise for future medicine. Despite a large number of plausible candidate protein biomarkers published annually, the translation to clinical use is impeded by factors such as the required size of the initial studies, and limitations of the technologies used. The proximity ligation assay (PLA) is a versatile molecular tool that has the potential to address some obstacles, both in validation of biomarkers previously discovered using other techniques, and for future routine clinical diagnostic needs. The enhanced specificity of PLA extends the opportunities for large-scale, high-performance analyses of proteins. Besides advantages in the form of minimal sample consumption and an extended dynamic range, the PLA technique allows flexible assay reconfiguration. The technology can be adapted for detecting protein complexes, proximity between proteins in extracellular vesicles or in circulating tumor cells, and to address multiple post-translational modifications in the same protein molecule. We discuss herein requirements for biomarker validation, and how PLA may play an increasing role in this regard. We describe some recent developments of the technology, including proximity extension assays, the use of recombinant affinity reagents suitable for use in proximity assays, and the potential for single cell proteomics. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.