Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sreenath Shanker is active.

Publication


Featured researches published by Sreenath Shanker.


Molecular Cell | 2009

High-affinity binding of Chp1 chromodomain to K9 methylated histone H3 is required to establish centromeric heterochromatin

Thomas Schalch; Godwin Job; Victoria J.P. Noffsinger; Sreenath Shanker; Canan Kuscu; Leemor Joshua-Tor; Janet F. Partridge

In fission yeast, assembly of centromeric heterochromatin requires the RITS complex, which consists of Ago1, Tas3, Chp1, and siRNAs derived from centromeric repeats. Recruitment of RITS to centromeres has been proposed to depend on siRNA-dependent targeting of Ago1 to centromeric sequences. Previously, we demonstrated that methylated lysine 9 of histone H3 (H3K9me) acts upstream of siRNAs during heterochromatin establishment. Our crystal structure of Chp1s chromodomain in complex with a trimethylated lysine 9 H3 peptide reveals extensive sites of contact that contribute to Chp1s high-affinity binding. We found that this high-affinity binding is critical for the efficient establishment of centromeric heterochromatin, but preassembled heterochromatin can be maintained when Chp1s affinity for H3K9me is greatly reduced.


Molecular and Cellular Biology | 2011

The Rhox Homeobox Gene Cluster Is Imprinted and Selectively Targeted for Regulation by Histone H1 and DNA Methylation

James A. MacLean; Anilkumar Bettegowda; Byung Ju Kim; Chih Hong Lou; Seung Min Yang; Anjana Bhardwaj; Sreenath Shanker; Zhiying Hu; Yuhong Fan; Sigrid Eckardt; K. John McLaughlin; Arthur I. Skoultchi; Miles F. Wilkinson

ABSTRACT Histone H1 is an abundant and essential component of chromatin whose precise role in regulating gene expression is poorly understood. Here, we report that a major target of H1-mediated regulation in embryonic stem (ES) cells is the X-linked Rhox homeobox gene cluster. To address the underlying mechanism, we examined the founding member of the Rhox gene cluster—Rhox5—and found that its distal promoter (Pd) loses H1, undergoes demethylation, and is transcriptionally activated in response to loss of H1 genes in ES cells. Demethylation of the Pd is required for its transcriptional induction and we identified a single cytosine in the Pd that, when methylated, is sufficient to inhibit Pd transcription. Methylation of this single cytosine prevents the Pd from binding GA-binding protein (GABP), a transcription factor essential for Pd transcription. Thus, H1 silences Rhox5 transcription by promoting methylation of one of its promoters, a mechanism likely to extend to other H1-regulated Rhox genes, based on analysis of ES cells lacking DNA methyltransferases. The Rhox cluster genes targeted for H1-mediated transcriptional repression are also subject to another DNA methylation-regulated process: Xp imprinting. Remarkably, we found that only H1-regulated Rhox genes are imprinted, not those immune to H1-mediated repression. Together, our results indicate that the Rhox gene cluster is a major target of H1-mediated transcriptional repression in ES cells and that H1 is a candidate to have a role in Xp imprinting.


The EMBO Journal | 2013

Sir2 is required for Clr4 to initiate centromeric heterochromatin assembly in fission yeast

Benjamin J. Alper; Godwin Job; Rajesh K Yadav; Sreenath Shanker; Brandon R. Lowe; Janet F. Partridge

Heterochromatin assembly in fission yeast depends on the Clr4 histone methyltransferase, which targets H3K9. We show that the histone deacetylase Sir2 is required for Clr4 activity at telomeres, but acts redundantly with Clr3 histone deacetylase to maintain centromeric heterochromatin. However, Sir2 is critical for Clr4 function during de novo centromeric heterochromatin assembly. We identified new targets of Sir2 and tested if their deacetylation is necessary for Clr4‐mediated heterochromatin establishment. Sir2 preferentially deacetylates H4K16Ac and H3K4Ac, but mutation of these residues to mimic acetylation did not prevent Clr4‐mediated heterochromatin establishment. Sir2 also deacetylates H3K9Ac and H3K14Ac. Strains bearing H3K9 or H3K14 mutations exhibit heterochromatin defects. H3K9 mutation blocks Clr4 function, but why H3K14 mutation impacts heterochromatin was not known. Here, we demonstrate that recruitment of Clr4 to centromeres is blocked by mutation of H3K14. We suggest that Sir2 deacetylates H3K14 to target Clr4 to centromeres. Further, we demonstrate that Sir2 is critical for de novo accumulation of H3K9me2 in RNAi‐deficient cells. These analyses place Sir2 and H3K14 deacetylation upstream of Clr4 recruitment during heterochromatin assembly.


PLOS Genetics | 2010

Continuous Requirement for the Clr4 Complex But Not RNAi for Centromeric Heterochromatin Assembly in Fission Yeast Harboring a Disrupted RITS Complex

Sreenath Shanker; Godwin Job; Olivia L. George; Kevin M. Creamer; Alaa Shaban; Janet F. Partridge

Formation of centromeric heterochromatin in fission yeast requires the combined action of chromatin modifying enzymes and small RNAs derived from centromeric transcripts. Positive feedback mechanisms that link the RNAi pathway and the Clr4/Suv39h1 histone H3K9 methyltransferase complex (Clr-C) result in requirements for H3K9 methylation for full siRNA production and for siRNA production to achieve full histone methylation. Nonetheless, it has been proposed that the Argonaute protein, Ago1, is the key initial trigger for heterochromatin assembly via its association with Dicer-independent “priRNAs.” The RITS complex physically links Ago1 and the H3-K9me binding protein Chp1. Here we exploit an assay for heterochromatin assembly in which loss of silencing by deletion of RNAi or Clr-C components can be reversed by re-introduction of the deleted gene. We showed previously that a mutant version of the RITS complex (Tas3WG) that biochemically separates Ago1 from Chp1 and Tas3 proteins permits maintenance of heterochromatin, but prevents its formation when Clr4 is removed and re-introduced. Here we show that the block occurs with mutants in Clr-C, but not mutants in the RNAi pathway. Thus, Clr-C components, but not RNAi factors, play a more critical role in assembly when the integrity of RITS is disrupted. Consistent with previous reports, cells lacking Clr-C components completely lack H3K9me2 on centromeric DNA repeats, whereas RNAi pathway mutants accumulate low levels of H3K9me2. Further supporting the existence of RNAi–independent mechanisms for establishment of centromeric heterochromatin, overexpression of clr4+ in clr4Δago1Δ cells results in some de novo H3K9me2 accumulation at centromeres. These findings and our observation that ago1Δ and dcr1Δ mutants display indistinguishable low levels of H3K9me2 (in contrast to a previous report) challenge the model that priRNAs trigger heterochromatin formation. Instead, our results indicate that RNAi cooperates with RNAi–independent factors in the assembly of heterochromatin.


Nature Structural & Molecular Biology | 2011

The Chp1-Tas3 core is a multifunctional platform critical for gene silencing by RITS

Thomas Schalch; Godwin Job; Sreenath Shanker; Janet F. Partridge; Leemor Joshua-Tor

RNA interference (RNAi) is critical for the assembly of heterochromatin at Schizosaccharomyces pombe centromeres. Central to this process is the RNA-induced initiation of transcriptional gene silencing (RITS) complex, which physically anchors small noncoding RNAs to chromatin. RITS includes Ago1, the chromodomain protein Chp1, and Tas3, which forms a bridge between Chp1 and Ago1. Chp1 is a large protein with no recognizable domains, apart from its chromodomain. Here we describe how the structured C-terminal half of Chp1 binds the Tas3 N-terminal domain, revealing the tight association of Chp1 and Tas3. The structure also shows a PIN domain at the C-terminal tip of Chp1 that controls subtelomeric transcripts through a post-transcriptional mechanism. We suggest that the Chp1–Tas3 complex provides a solid and versatile platform to recruit both RNAi-dependent and RNAi-independent gene-silencing pathways for locus-specific regulation of heterochromatin.


Journal of Biological Chemistry | 2008

The RHOX5 Homeodomain Protein Mediates Transcriptional Repression of the Netrin-1 Receptor Gene Unc5c

Zhiying Hu; Sreenath Shanker; James A. MacLean; Susan L. Ackerman; Miles F. Wilkinson

The X-linked mouse Rhox gene cluster contains more than 30 homeobox genes that are candidates to regulate multiple steps in male and female gametogenesis. The founding member of the Rhox gene cluster, Rhox5, is an androgen-dependent gene expressed in Sertoli cells that promotes the survival and differentiation of the adjacent male germ cells. Here, we report the first identification and characterization of a Rhox5-regulated gene. This gene, Unc5c, encodes a pro-apoptotic receptor with tumor suppressor activity that we found is negatively regulated by Rhox5 in the testis in vivo. Transfection analyses in cell lines of different origin indicated that Rhox5-dependent down-regulation of Unc5c requires another Sertoli cell-specific cofactor. Examination of other mouse Rhox family members revealed that mouse RHOX2 and RHOX3 also have the ability to down-regulate Unc5c expression. The human RHOX protein PEPP2 (RHOXF2) also had this ability, indicating that Unc5c repression is a conserved RHOX-dependent response. Deletion analysis identified a Rhox5-responsive element in the Unc5c 5′-untranslated region. Although 5′-untranslated regions typically house post-transcriptional elements, several lines of evidence indicated that Rhox5 down-regulates Unc5c at the transcriptional level. The repression of Unc5c expression by Rhox5 may, in part, mediate the pro-survival function of Rhox5 in the testis, as we found that Unc5c mutant mice have decreased germ cell apoptosis in the testis. Along with our other data, these findings led us to propose a model in which Rhox5 is a negative regulator upstream of Unc5c in a Sertoli-cell pathway that promotes germ-cell survival.


International Journal of Andrology | 2008

Epigenetic regulation and downstream targets of the Rhox5 homeobox gene

Sreenath Shanker; Zhiying Hu; Miles F. Wilkinson

The discovery of the Rhox homeobox gene cluster on the X chromosome opens up new vistas in the regulation of reproductive processes in mammals. In mice, this cluster comprises more than 30 genes that are selectively expressed in reproductive tissues. A subset of Rhox genes are androgen and AR regulated in postnatal and adult Sertoli cells, making them candidates to mediate androgen-dependent steps during spermatogenesis. The best characterized of these androgen/AR-regulated genes is Rhox5 (Pem), the founding member of the Rhox gene cluster. Targeted deletion of Rhox5 in mice causes male subfertility marked by increased germ-cell apoptosis and decreased sperm count and motility. Microarray analyses identified a wide variety of genes regulated by Rhox5 in Sertoli cells. One of them is the tumour suppressor UNC5C, a pro-apoptotic molecule previously only known to be involved in brain development. Targeted deletion of Unc5c causes decreased germ-cell apoptosis in postnatal and adult testes, indicating that it also has a role in spermatogenesis and supporting a model in which Rhox5 promotes germ-cell survival by downregulating Unc5c. Rhox5 has two independently regulated promoters that have distinct expression patterns. The unique tissue-specific and developmentally regulated transcription pattern of these two promoters appear to be controlled by DNA methylation. Both promoters are methylated in tissues in which they are not expressed, suggesting that DNA methylation serves to repress Rhox5 expression in inappropriate cell types and tissues. In summary, the Rhox gene cluster is an epigenetically regulated set of genes encoding a large number of transcription factors that are strong candidates to regulate gametogenesis and other aspects of reproduction.


PLOS Genetics | 2011

H3K9me-Independent Gene Silencing in Fission Yeast Heterochromatin by Clr5 and Histone Deacetylases

Klavs R. Hansen; Idit Hazan; Sreenath Shanker; Stephen Watt; Janne Verhein-Hansen; Jürg Bähler; Robert A. Martienssen; Janet F. Partridge; Amikam Cohen; Geneviève Thon

Nucleosomes in heterochromatic regions bear histone modifications that distinguish them from euchromatic nucleosomes. Among those, histone H3 lysine 9 methylation (H3K9me) and hypoacetylation have been evolutionarily conserved and are found in both multicellular eukaryotes and single-cell model organisms such as fission yeast. In spite of numerous studies, the relative contributions of the various heterochromatic histone marks to the properties of heterochromatin remain largely undefined. Here, we report that silencing of the fission yeast mating-type cassettes, which are located in a well-characterized heterochromatic region, is hardly affected in cells lacking the H3K9 methyltransferase Clr4. We document the existence of a pathway parallel to H3K9me ensuring gene repression in the absence of Clr4 and identify a silencing factor central to this pathway, Clr5. We find that Clr5 controls gene expression at multiple chromosomal locations in addition to affecting the mating-type region. The histone deacetylase Clr6 acts in the same pathway as Clr5, at least for its effects in the mating-type region, and on a subset of other targets, notably a region recently found to be prone to neo-centromere formation. The genomic targets of Clr5 also include Ste11, a master regulator of sexual differentiation. Hence Clr5, like the multi-functional Atf1 transcription factor which also modulates chromatin structure in the mating-type region, controls sexual differentiation and genome integrity at several levels. Globally, our results point to histone deacetylases as prominent repressors of gene expression in fission yeast heterochromatin. These deacetylases can act in concert with, or independently of, the widely studied H3K9me mark to influence gene silencing at heterochromatic loci.


Molecular Endocrinology | 2012

DNA Demethylation-Dependent AR Recruitment and GATA Factors Drive Rhox5 Homeobox Gene Transcription in the Epididymis

Anjana Bhardwaj; Hye Won Song; Marcy Beildeck; Stefanie Kerkhofs; Ryan J. Castoro; Sreenath Shanker; Karel De Gendt; Kichiya Suzuki; Frank Claessens; Jean-Pierre Issa; Marie Claire Orgebin-Crist; Miles F. Wilkinson

Mammalian male fertility depends on the epididymis, a highly segmented organ that promotes sperm maturation and protects sperm from oxidative damage. Remarkably little is known about how gene expression is controlled in the epididymis. A candidate to regulate genes crucial for epididymal function is reproductive homeobox gene on X chromosome (RHOX)5, a homeobox transcription factor essential for optimal sperm motility that is expressed in the caput region of the epididymis. Here, we report the identification of factors that control Rhox5 gene expression in epididymal cells in a developmentally regulated and region-specific fashion. First, we identify GATA transcription factor-binding sites in the Rhox5 proximal promoter (Pp) necessary for Rhox5 expression in epididymal cells in vitro and in vivo. Adjacent to the GATA sites are androgen-response elements, which bind to the nuclear hormone receptor androgen receptor (AR), and are responsible for the AR-dependent expression of Rhox5 in epididymal cells. We provide evidence that AR is recruited to the Pp in a region-specific and developmentally regulated manner in the epididymis that is dictated not only by differential AR availability but differential methylation of the Pp. Site-specific methylation of the Pp cytosine and guanine separated by one phosphate, most of which overlap with androgen-response elements, inhibited both AR occupancy at the Pp and Pp-dependent transcription in caput epididymal cells. Together, our data support a model in which DNA methylation, AR, and GATA factors collaborate to dictate the unique developmental and region-specific expression pattern of the RHOX5 homeobox transcription factor in the caput epididymis, which in turn controls the expression of genes critical for promoting sperm motility and function.


Molecular Cell | 2016

SHREC Silences Heterochromatin via Distinct Remodeling and Deacetylation Modules.

Godwin Job; Christiane Brugger; Tao Xu; Brandon R. Lowe; Yvan Pfister; Chunxu Qu; Sreenath Shanker; José I. Baños Sanz; Janet F. Partridge; Thomas Schalch

Nucleosome remodeling and deacetylation (NuRD) complexes are co-transcriptional regulators implicated in differentiation, development, and diseases. Methyl-CpG binding domain (MBD) proteins play an essential role in recruitment of NuRD complexes to their target sites in chromatin. The related SHREC complex in fission yeast drives transcriptional gene silencing in heterochromatin through cooperation with HP1 proteins. How remodeler and histone deacetylase (HDAC) cooperate within NuRD complexes remains unresolved. We determined that in SHREC the two modules occupy distant sites on the scaffold protein Clr1 and that repressive activity of SHREC can be modulated by the expression level of the HDAC-associated Clr1 domain alone. Moreover, the crystal structure of Clr2 reveals an MBD-like domain mediating recruitment of the HDAC module to heterochromatin. Thus, SHREC bi-functionality is organized in two separate modules with separate recruitment mechanisms, which work together to elicit transcriptional silencing at heterochromatic loci.

Collaboration


Dive into the Sreenath Shanker's collaboration.

Top Co-Authors

Avatar

Janet F. Partridge

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Godwin Job

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

Anjana Bhardwaj

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Zhiying Hu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brandon R. Lowe

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

James A. MacLean

Southern Illinois University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Kevin M. Creamer

University of Tennessee Health Science Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge