Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where James A. MacLean is active.

Publication


Featured researches published by James A. MacLean.


Immunity | 2000

IP-10 Is Critical for Effector T Cell Trafficking and Host Survival in Toxoplasma gondii Infection

Imtiaz A. Khan; James A. MacLean; Frederick S. Lee; Lori Casciotti; Elliot DeHaan; Joseph D. Schwartzman; Andrew D. Luster

The generation of an adaptive immune response against intracellular pathogens requires the recruitment of effector T cells to sites of infection. Here we show that the chemokine IP-10, a specific chemoattractant for activated T cells, controls this process in mice naturally infected with Toxoplasma gondii. Neutralization of IP-10 in infected mice inhibited the massive influx of T cells into tissues and impaired antigen-specific T cell effector functions. This resulted in >1000-fold increase in tissue parasite burden and a marked increase in mortality compared to control antibody-treated mice. These observations suggest that IP-10 may play a broader role in the localization and function of effector T cells at sites of Th1 inflammation.


Journal of Immunology | 2002

IFN-γ-Inducible Protein 10 (CXCL10) Contributes to Airway Hyperreactivity and Airway Inflammation in a Mouse Model of Asthma

Benjamin D. Medoff; Alain Sauty; Andrew M. Tager; James A. MacLean; R. Neal Smith; Anuja Mathew; Jennifer H. Dufour; Andrew D. Luster

Allergic asthma is an inflammatory disease of the airways characterized by eosinophilic inflammation and airway hyper-reactivity. Cytokines and chemokines specific for Th2-type inflammation predominate in asthma and in animal models of this disease. The role of Th1-type inflammatory mediators in asthma remains controversial. IFN-γ-inducible protein 10 (IP-10; CXCL10) is an IFN-γ-inducible chemokine that preferentially attracts activated Th1 lymphocytes. IP-10 is up-regulated in the airways of asthmatics, but its function in asthma is unclear. To investigate the role of IP-10 in allergic airway disease, we examined the expression of IP-10 in a murine model of asthma and the effects of overexpression and deletion of IP-10 in this model using IP-10-transgenic and IP-10-deficient mice. Our experiments demonstrate that IP-10 is up-regulated in the lung after allergen challenge. Mice that overexpress IP-10 in the lung exhibited significantly increased airway hyperreactivity, eosinophilia, IL-4 levels, and CD8+ lymphocyte recruitment compared with wild-type controls. In addition, there was an increase in the percentage of IL-4-secreting T lymphocytes in the lungs of IP-10-transgenic mice. In contrast, mice deficient in IP-10 demonstrated the opposite results compared with wild-type controls, with a significant reduction in these measures of Th2-type allergic airway inflammation. Our results demonstrate that IP-10, a Th1-type chemokine, is up-regulated in allergic pulmonary inflammation and that this contributes to the airway hyperreactivity and Th2-type inflammation seen in this model of asthma.


Cell | 2005

Rhox: A New Homeobox Gene Cluster

James A. MacLean; Mingang A. Chen; Chad M. Wayne; Shirley R. Bruce; Manjeet K. Rao; Marvin L. Meistrich; Carol L. MacLeod; Miles F. Wilkinson

Homeobox genes encode transcription factors notable for their ability to regulate embryogenesis. Here, we report the discovery of a cluster of 12 related homeobox genes on the X chromosome expressed in male and female reproductive tissues in adult mice. These reproductive homeobox on the X chromosome (Rhox) genes are expressed in a cell type-specific manner; several are hormonally regulated, and their expression pattern during postnatal testis development corresponds to their chromosomal position. Most of the Rhox genes are expressed in Sertoli cells, the nurse cells in direct contact with developing male germ cells, suggesting that they regulate the expression of somatic-cell gene products critical for germ cell development. In support of this, targeted disruption of Rhox5 increased male germ cell apoptosis and reduced sperm production, sperm motility, and fertility. Identification of this family of homeobox genes provides an opportunity to study colinear gene regulation and the transcriptional control of reproduction.


The EMBO Journal | 2007

An alternative branch of the nonsense-mediated decay pathway

Wai-Kin Chan; Lulu Huang; Jayanthi Gudikote; Yao-Fu Chang; J. Saadi Imam; James A. MacLean; Miles F. Wilkinson

The T‐cell receptor (TCR) locus undergoes programmed rearrangements that frequently generate premature termination codons (PTCs). The PTC‐bearing transcripts derived from such nonproductively rearranged genes are dramatically downregulated by the nonsense‐mediated decay (NMD) pathway. Here, we show that depletion of the NMD factor UPF3b does not impair TCRβ NMD, thereby distinguishing it from classical NMD. Depletion of the related factor UPF3a, by itself or in combination with UPF3b, also has no effect on TCRβ NMD. Mapping experiments revealed the identity of TCRβ sequences that elicit a switch to UPF3b dependence. This regulation is not a peculiarity of TCRβ, as we identified many wild‐type genes, including one essential for NMD, that transcribe NMD‐targeted mRNAs whose downregulation is little or not affected by UPF3a and UPF3b depletion. We propose that we have uncovered an alternative branch of the NMD pathway that not only degrades aberrant mRNAs but also regulates normal mRNAs, including one that participates in a negative feedback loop controlling the magnitude of NMD.


Biology of Reproduction | 2009

Wnt Genes in the Mouse Uterus: Potential Regulation of Implantation

Kanako Hayashi; David W. Erikson; Sarah A. Tilford; Brent M. Bany; James A. MacLean; Edmund B. Rucker; Greg A. Johnson; Thomas E. Spencer

Abstract Wnt genes are involved in critical developmental and growth processes. The present study comprehensively analyzed temporal and spatial alterations in Wnt and Fzd gene expression in the mouse uterus during peri-implantation of pregnancy. Expression of Wnt4, Wnt5a, Wnt7a, Wnt7b, Wnt11, Wnt16, Fzd2, Fzd4, and Fzd6 was detected in the uterus during implantation. Wnt4 mRNA was most abundant in the decidua, whereas Wnt5a mRNA was restricted to the mesometrial decidua during decidualization. Wnt7a, Wnt7b, and Wnt11 mRNAs were abundantly detected in the endometrial epithelia. The expression of Wnt7b was robust in the luminal epithelium (LE) at the implantation site on Gestational Day 5, whereas Wnt11 mRNA disappeared in the LE adjacent to the embryo in the antimesometrial implantation chamber but remained abundant in the LE. Wnt16 mRNA was localized to the stroma surrounding the LE on Day 4 and remained in the stroma adjacent to the LE but not in areas undergoing the decidual reaction. Fzd2 mRNA was detected in the decidua, Fzd4 mRNA was in the vessels and stroma surrounding the embryo, and Fzd6 mRNA was observed in the endometrial epithelia, stroma, and some blood vessels during implantation. Ovarian steroid hormone treatment was found to regulate Wnt genes and Fzd receptors in ovariectomized mice. Especially, single injections of progesterone stimulated Wnt11 mRNA, and estrogen stimulated Wnt4 and Wnt7b. The temporal and spatial alterations in Wnt genes likely play a critical role during implantation and decidualization in mice.


Current Topics in Developmental Biology | 2005

Gene regulation in spermatogenesis.

James A. MacLean; Miles F. Wilkinson

Mammalian spermatogenesis is a complex hormone-dependent developmental program in which a myriad of events must take place to ensure that germ cells reach their proper stage of development at the proper time. Many of these events are controlled by cell type- and stage-specific transcription factors. The regulatory mechanisms involved provide an intriguing paradigm for the field of developmental biology and may lead to the development of new contraceptives an and innovative routs to treat male infertility. In this review, we address three aspects of the genetic regulatory mechanism that drive spermatogenesis. First, we detail what is known about how steroid hormones (both androgens and estrogens) and their cognate receptors initiate and maintain mammalian spermatogenesis. Steroids act through three mechanistic routes: (i) direct activation of genes through hormone-dependent promoter elements, (ii) secondary transcriptional responses through activation of hormone-dependent transcription factors, and (iii) rapid, transcription-independent (nonclassical) events induced by steroid hormones. Second, we provide a survey of transcription factors that function in mammalian spermatogenesis, including homeobox, zinc-finger, heat-shock, and cAMP-response family members. Our survey is not intended to cover all examples but to give a flavor for the gamut of biological roles conferred by transcription factors in the testis, particularly those defined in knockout mice. Third, we address how testis-specific transcription is achieved. In particular, we cover the evidence for and against the idea that some testis-specific genes are transcriptionally silent in somatic tissues as a result of DNA methylation.


Biology of Reproduction | 2012

Cdh1 Is Essential for Endometrial Differentiation, Gland Development, and Adult Function in the Mouse Uterus

Sarah N. Reardon; Mandy L. King; James A. MacLean; Jordan L. Mann; Francesco J. DeMayo; John P. Lydon; Kanako Hayashi

ABSTRACT CDH1 is a cell-cell adhesion molecule expressed in the epithelium to coordinate key morphogenetic processes, establish cell polarity, and regulate epithelial differentiation and proliferation. To determine the role of CDH1 in the mouse uterus, Cdh1 was conditionally ablated by crossing Pgr-Cre and Cdh1-flox mice, and the phenotype was characterized. We found that loss of Cdh1 results in a disorganized cellular structure of the epithelium and ablation of endometrial glands in the neonatal uterus. Cdh1d/d mice lost adherens junctions (CTNNB1 and CTNNA1) and tight junctions (claudin, occludin, and ZO-1 proteins) in the neonatal uterus, leading to loss of epithelial cell-cell interaction. Ablation of Cdh1 induced abnormal epithelial proliferation and massive apoptosis, and disrupted Wnt and Hox gene expression in the neonatal uterus. Although the uteri of Cdh1d/d mice did not show any myometrial defects, ablation of Cdh1 inhibited expression of epithelial (cytokeratin 8) and stromal (CD10) markers. Cdh1d/d mice were infertile because of defects during implantation and decidualization. Furthermore, we showed in the model of conditional ablation of both Cdh1 and Trp53 in the uterus that interrupting cell cycle regulation through the loss of Cdh1 leads to abnormal uterine development. The uteri of Cdh1d/d Trp53d/d mice exhibited histological features of endometrial carcinomas with myometrial invasion. Collectively, these findings suggest that CDH1 has an important role in structural and functional development of the uterus as well as adult uterine function. CDH1 has a capacity to control cell fate by altering directional cell proliferation and apoptosis.


Molecular Cancer Research | 2012

WNT7A regulates tumor growth and progression in ovarian cancer through the WNT/β-catenin pathway.

Shin Yoshioka; Mandy L. King; Sophia Ran; Hiroshi Okuda; James A. MacLean; Mary E. McAsey; Norihiro Sugino; Laurent Brard; Kounosuke Watabe; Kanako Hayashi

Abnormal activation the WNT/β-catenin signaling pathway has been associated with ovarian carcinomas, but a specific WNT ligand and pertinent downstream mechanisms are not fully understood. In this study, we found abundant WNT7A in the epithelium of serous ovarian carcinomas, but not detected in borderline and benign tumors, normal ovary, or endometrioid carcinomas. To characterize the role of WNT7A in ovarian tumor growth and progression, nude mice were injected either intraperitoneally or subcutaneously with WNT7A knocked down SKOV3.ip1 and overexpressed SKOV3 cells. In the intraperitoneal group, mice receiving SKOV3.ip1 cells with reduced WNT7A expression developed significantly fewer tumor lesions. Gross and histologic examination revealed greatly reduced invasion of WNT7A knockdown cells into intestinal mesentery and serosa compared with the control cells. Tumor growth was regulated by loss or overexpression of WNT7A in mice receiving subcutaneous injection as well. In vitro analysis of cell function revealed that cell proliferation, adhesion, and invasion were regulated by WNT7A. The activity of the T-cell factor/lymphoid enhancer factor (TCF/LEF) reporter was stimulated by overexpression of WNT7A in ovarian cancer cells. Cotransfection with WNT7A and FZD5 receptor further increased activity, and this effect was inhibited by cotransfection with SFRP2 or dominant negative TCF4. Overexpression of WNT7A stimulated matrix metalloproteinase 7 (MMP7) promoter, and mutation of TCF-binding sites in MMP7 promoter confirmed that activation of MMP7 promoter by WNT7A was mediated by β-catenin/TCF signaling. Collectively, these results suggest that reexpression of WNT7A during malignant transformation of ovarian epithelial cells plays a critical role in ovarian cancer progression mediated by WNT/β-catenin signaling pathway. Mol Cancer Res; 10(3); 469–82. ©2012 AACR.


Biology of Reproduction | 2011

WNTs in the Neonatal Mouse Uterus: Potential Regulation of Endometrial Gland Development

Kanako Hayashi; Shin Yoshioka; Sarah N. Reardon; Edmund B. Rucker; Thomas E. Spencer; Francesco J. DeMayo; John P. Lydon; James A. MacLean

The WNTs are secreted proteins that control essential developmental processes, such as embryonic patterning, cell growth, migration, and differentiation. In mice, three members of the Wnt gene family (Wnt4, Wnt5a, and Wnt7a) have been studied extensively in the female reproductive tract. The present study determined effects of postnatal day and exposure to diethylstilbestrol (DES) on Wnt and Fzd gene expression in the mouse uterus as well as the biological role of Wnt11 in postnatal mouse uterine development and function. Wnt4, Wnt5a, Wnt7a, Wnt7b, Wnt11, Wnt16, Fzd6, and Fzd10 were detected by in situ hybridization in the neonatal mouse uterus. In situ hybridization analyses revealed that Wnt4, Wnt5a, and Wnt16 were localized in the endometrial stroma, whereas Wnt7a, Wnt7b, Wnt11, Fzd6, and Fzd10 were in the uterine epithelia of neonatal mice. Exposure of mice to estrogen or estrogen receptor agonists during critical development periods inhibits endometrial adenogenesis. In the present study, DES-induced disruption of endometrial gland development was associated with reduction or suppression of Wnt4, Wnt5a, Wnt7a, Wnt11, Wnt16, and Fzd10. Ablation of Wnt11, an epithelial-expressed, DES-regulated gene, in the neonatal uterus did not affect endometrial adenogenesis or expression of other Wnt genes. Interestingly, Wnt11-deleted uteri had more endometrial glands on Postnatal Day 10. Although CTNNB1 expression was not affected by ablation of Wnt11, Vangl2 was inhibited in the uteri of Wnt11d/d mice. These results support the idea that a number of different Wnt genes are potential regulators for uterine morphogenesis; however, Wnt11 does not have a direct effect on uterine development.


The New England Journal of Medicine | 2000

Acute eosinophilic hepatitis from trovafloxacin.

Henry J.L. Chen; Kurt J. Bloch; James A. MacLean

To the Editor: According to the Food and Drug Administration, trovafloxacin, a broad-spectrum quinolone antibiotic, has been associated with more than 100 cases of hepatic toxicity. Fourteen of the...

Collaboration


Dive into the James A. MacLean's collaboration.

Top Co-Authors

Avatar

Kanako Hayashi

Southern Illinois University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mandy L. King

Southern Illinois University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John P. Lydon

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Manjeet K. Rao

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sophia Ran

Southern Illinois University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Zhiying Hu

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge