Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sri Hapsari Budisulistiorini is active.

Publication


Featured researches published by Sri Hapsari Budisulistiorini.


Environmental Science & Technology | 2012

Isoprene Epoxydiols as Precursors to Secondary Organic Aerosol Formation: Acid-Catalyzed Reactive Uptake Studies with Authentic Compounds

Ying Hsuan Lin; Zhenfa Zhang; Kenneth S. Docherty; Haofei Zhang; Sri Hapsari Budisulistiorini; Caitlin L. Rubitschun; Stephanie L. Shaw; Eladio M. Knipping; Eric S. Edgerton; Tadeusz E. Kleindienst; Avram Gold; Jason D. Surratt

Isoprene epoxydiols (IEPOX), formed from the photooxidation of isoprene under low-NO(x) conditions, have recently been proposed as precursors of secondary organic aerosol (SOA) on the basis of mass spectrometric evidence. In the present study, IEPOX isomers were synthesized in high purity (>99%) to investigate their potential to form SOA via reactive uptake in a series of controlled dark chamber studies followed by reaction product analyses. IEPOX-derived SOA was substantially observed only in the presence of acidic aerosols, with conservative lower-bound yields of 4.7-6.4% for β-IEPOX and 3.4-5.5% for δ-IEPOX, providing direct evidence for IEPOX isomers as precursors to isoprene SOA. These chamber studies demonstrate that IEPOX uptake explains the formation of known isoprene SOA tracers found in ambient aerosols, including 2-methyltetrols, C(5)-alkene triols, dimers, and IEPOX-derived organosulfates. Additionally, we show reactive uptake on the acidified sulfate aerosols supports a previously unreported acid-catalyzed intramolecular rearrangement of IEPOX to cis- and trans-3-methyltetrahydrofuran-3,4-diols (3-MeTHF-3,4-diols) in the particle phase. Analysis of these novel tracer compounds by aerosol mass spectrometry (AMS) suggests that they contribute to a unique factor resolved from positive matrix factorization (PMF) of AMS organic aerosol spectra collected from low-NO(x), isoprene-dominated regions influenced by the presence of acidic aerosols.


Environmental Science & Technology | 2013

Real-Time Continuous Characterization of Secondary Organic Aerosol Derived from Isoprene Epoxydiols in Downtown Atlanta, Georgia, Using the Aerodyne Aerosol Chemical Speciation Monitor

Sri Hapsari Budisulistiorini; Manjula R. Canagaratna; Philip L. Croteau; Wendy J. Marth; Karsten Baumann; Eric S. Edgerton; Stephanie L. Shaw; Eladio M. Knipping; Douglas R. Worsnop; John T. Jayne; Avram Gold; Jason D. Surratt

Real-time continuous chemical measurements of fine aerosol were made using an Aerodyne Aerosol Chemical Speciation Monitor (ACSM) during summer and fall 2011 in downtown Atlanta, Georgia. Organic mass spectra measured by the ACSM were analyzed by positive matrix factorization (PMF), yielding three conventional factors: hydrocarbon-like organic aerosol (HOA), semivolatile oxygenated organic aerosol (SV-OOA), and low-volatility oxygenated organic aerosol (LV-OOA). An additional OOA factor that contributed to 33 ± 10% of the organic mass was resolved in summer. This factor had a mass spectrum that strongly correlated (r(2) = 0.74) to that obtained from laboratory-generated secondary organic aerosol (SOA) derived from synthetic isoprene epoxydiols (IEPOX). Time series of this additional factor is also well correlated (r(2) = 0.59) with IEPOX-derived SOA tracers from filters collected in Atlanta but less correlated (r(2) < 0.3) with a methacrylic acid epoxide (MAE)-derived SOA tracer, α-pinene SOA tracers, and a biomass burning tracer (i.e., levoglucosan), and primary emissions. Our analyses suggest IEPOX as the source of this additional factor, which has some correlation with aerosol acidity (r(2) = 0.3), measured as H(+) (nmol m(-3)), and sulfate mass loading (r(2) = 0.48), consistent with prior work showing that these two parameters promote heterogeneous chemistry of IEPOX to form SOA.


Environmental Science & Technology | 2014

Light-absorbing oligomer formation in secondary organic aerosol from reactive uptake of isoprene epoxydiols

Ying Hsuan Lin; Sri Hapsari Budisulistiorini; Kevin S. Chu; Richard A. Siejack; Haofei Zhang; Matthieu Riva; Zhenfa Zhang; Avram Gold; Kathryn E. Kautzman; Jason D. Surratt

Secondary organic aerosol (SOA) produced from reactive uptake and multiphase chemistry of isoprene epoxydiols (IEPOX) has been found to contribute substantially (upward of 33%) to the fine organic aerosol mass over the Southeastern U.S. Brown carbon (BrC) in rural areas of this region has been linked to secondary sources in the summer when the influence of biomass burning is low. We demonstrate the formation of light-absorbing (290 < λ < 700 nm) SOA constituents from reactive uptake of trans-β-IEPOX onto preexisting sulfate aerosols as a potential source of secondary BrC. IEPOX-derived BrC generated in controlled chamber experiments under dry, acidic conditions has an average mass absorption coefficient of ∼ 300 cm(2) g(-1). Chemical analyses of SOA constituents using UV-visible spectroscopy and high-resolution mass spectrometry indicate the presence of highly unsaturated oligomeric species with molecular weights separated by mass units of 100 (C5H8O2) and 82 (C5H6O) coincident with the observations of enhanced light absorption, suggesting such oligomers as chromophores, and potentially explaining one source of humic-like substances (HULIS) ubiquitously present in atmospheric aerosol. Similar light-absorbing oligomers were identified in fine aerosol collected in the rural Southeastern U.S., supporting their atmospheric relevance and revealing a previously unrecognized source of oligomers derived from isoprene that contributes to ambient fine aerosol mass.


Environmental Science & Technology | 2016

Chemical Characterization of Secondary Organic Aerosol from Oxidation of Isoprene Hydroxyhydroperoxides

Matthieu Riva; Sri Hapsari Budisulistiorini; Yuzhi Chen; Zhenfa Zhang; Emma L. D’Ambro; Xuan Zhang; Avram Gold; Barbara J. Turpin; Joel A. Thornton; Manjula R. Canagaratna; Jason D. Surratt

Atmospheric oxidation of isoprene under low-NOx conditions leads to the formation of isoprene hydroxyhydroperoxides (ISOPOOH). Subsequent oxidation of ISOPOOH largely produces isoprene epoxydiols (IEPOX), which are known secondary organic aerosol (SOA) precursors. Although SOA from IEPOX has been previously examined, systematic studies of SOA characterization through a non-IEPOX route from 1,2-ISOPOOH oxidation are lacking. In the present work, SOA formation from the oxidation of authentic 1,2-ISOPOOH under low-NOx conditions was systematically examined with varying aerosol compositions and relative humidity. High yields of highly oxidized compounds, including multifunctional organosulfates (OSs) and hydroperoxides, were chemically characterized in both laboratory-generated SOA and fine aerosol samples collected from the southeastern U.S. IEPOX-derived SOA constituents were observed in all experiments, but their concentrations were only enhanced in the presence of acidified sulfate aerosol, consistent with prior work. High-resolution aerosol mass spectrometry (HR-AMS) reveals that 1,2-ISOPOOH-derived SOA formed through non-IEPOX routes exhibits a notable mass spectrum with a characteristic fragment ion at m/z 91. This laboratory-generated mass spectrum is strongly correlated with a factor recently resolved by positive matrix factorization (PMF) of aerosol mass spectrometer data collected in areas dominated by isoprene emissions, suggesting that the non-IEPOX pathway could contribute to ambient SOA measured in the Southeastern United States.


Atmospheric Chemistry and Physics | 2016

Assessing the impact of anthropogenic pollution on isoprene-derived secondary organic aerosol formation in PM2.5 collected from the Birmingham, Alabama, ground site during the 2013 Southern Oxidant and Aerosol Study

Weruka Rattanavaraha; Kevin S. Chu; Sri Hapsari Budisulistiorini; Matthieu Riva; Ying Hsuan Lin; Eric S. Edgerton; Karsten Baumann; Stephanie L. Shaw; Hongyu Guo; Laura E. King; Rodney J. Weber; Miranda E. Neff; Elizabeth A. Stone; John H. Offenberg; Zhenfa Zhang; Avram Gold; Jason D. Surratt

In the southeastern US, substantial emissions of isoprene from deciduous trees undergo atmospheric oxidation to form secondary organic aerosol (SOA) that contributes to fine particulate matter (PM2.5). Laboratory studies have revealed that anthropogenic pollutants, such as sulfur dioxide (SO2), oxides of nitrogen (NOx), and aerosol acidity, can enhance SOA formation from the hydroxyl radical (OH)-initiated oxidation of isoprene; however, the mechanisms by which specific pollutants enhance isoprene SOA in ambient PM2.5 remain unclear. As one aspect of an investigation to examine how anthropogenic pollutants influence isoprene-derived SOA formation, high-volume PM2.5 filter samples were collected at the Birmingham, Alabama (BHM), ground site during the 2013 Southern Oxidant and Aerosol Study (SOAS). Sample extracts were analyzed by gas chromatography-electron ionization-mass spectrometry (GC/EI-MS) with prior trimethylsilylation and ultra performance liquid chromatography coupled to electrospray ionization high-resolution quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-QTOFMS) to identify known isoprene SOA tracers. Tracers quantified using both surrogate and authentic standards were compared with collocated gas- and particle-phase data as well as meteorological data provided by the Southeastern Aerosol Research and Characterization (SEARCH) network to assess the impact of anthropogenic pollution on isoprene-derived SOA formation. Results of this study reveal that isoprene-derived SOA tracers contribute a substantial mass fraction of organic matter (OM) (~ 7 to ~ 20 %). Isoprene-derived SOA tracers correlated with sulfate (SO42−) (r2 = 0.34, n = 117) but not with NOx. Moderate correlations between methacrylic acid epoxide and hydroxymethyl-methyl-α-lactone (together abbreviated MAE/HMML)-derived SOA tracers with nitrate radical production (P[NO3]) (r2 = 0.57, n = 40) were observed during nighttime, suggesting a potential role of the NO3 radical in forming this SOA type. However, the nighttime correlation of these tracers with nitrogen dioxide (NO2) (r2 = 0.26, n = 40) was weaker. Ozone (O3) correlated strongly with MAE/HMML-derived tracers (r2 = 0.72, n = 30) and moderately with 2-methyltetrols (r2 = 0.34, n = 15) during daytime only, suggesting that a fraction of SOA formation could occur from isoprene ozonolysis in urban areas. No correlation was observed between aerosol pH and isoprene-derived SOA. Lack of correlation between aerosol acidity and isoprene-derived SOA is consistent with the observation that acidity is not a limiting factor for isoprene SOA formation at the BHM site as aerosols were acidic enough to promote multiphase chemistry of isoprene-derived epoxides throughout the duration of the study. All in all, these results confirm previous studies suggesting that anthropogenic pollutants enhance isoprene-derived SOA formation.


Atmospheric Chemistry and Physics | 2016

On the implications of aerosol liquid water and phase separation for organic aerosol mass

Havala O. T. Pye; Benjamin N. Murphy; Lu Xu; Nga L. Ng; Annmarie G. Carlton; Hongyu Guo; Rodney J. Weber; Petros Vasilakos; K. Wyat Appel; Sri Hapsari Budisulistiorini; Jason D. Surratt; Athanasios Nenes; Weiwei Hu; Jose L. Jimenez; Gabriel Isaacman-VanWertz; Pawel K. Misztal; Allen H. Goldstein

Organic compounds and liquid water are major aerosol constituents in the southeast United States (SE US). Water associated with inorganic constituents (inorganic water) can contribute to the partitioning medium for organic aerosol when relative humidities or organic matter to organic carbon (OM/OC) ratios are high such that separation relative humidities (SRH) are below the ambient relative humidity (RH). As OM/OC ratios in the SE US are often between 1.8 and 2.2, organic aerosol experiences both mixing with inorganic water and separation from it. Regional chemical transport model simulations including inorganic water (but excluding water uptake by organic compounds) in the partitioning medium for secondary organic aerosol (SOA) when RH > SRH led to increased SOA concentrations,· particularly at night. Water uptake to the organic phase resulted in even greater SOA concentrations as a result of a positive feedback in which water uptake increased SOA, which further increased aerosol water and organic aerosol. Aerosol properties· such as the OM/OC and hygroscopicity parameter (κorg), were captured well by the model compared with measurements during the Southern Oxidant and Aerosol Study (SOAS) 2013. Organic nitrates from monoterpene oxidation were predicted to be the least water-soluble semivolatile species in the model, but most biogenically derived semivolatile species in the Community Multiscale Air Quality (CMAQ) model were highly water soluble and expected to contribute to water-soluble organic carbon (WSOC). Organic aerosol and SOA precursors were abundant at night, but additional improvements in daytime organic aerosol are needed to close the model–measurement gap. When taking into account deviations from ideality, including both inorganic (when RH > SRH) and organic water in the organic partitioning medium reduced the mean bias in SOA for routine monitoring networks and improved model performance compared to observations from SOAS. Property updates from this work will be released in CMAQ v5.2.


Atmospheric Chemistry and Physics | 2015

Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements

Weiwei Hu; Pedro Campuzano-Jost; Brett B. Palm; Douglas A. Day; Amber M. Ortega; Patrick L. Hayes; Jordan E. Krechmer; Qi Chen; Mikinori Kuwata; Yingjun Liu; S. S. de Sá; Karena A. McKinney; Scot T. Martin; Min Hu; Sri Hapsari Budisulistiorini; Matthieu Riva; Jason D. Surratt; J. M. St. Clair; G Isaacman-Van Wertz; L. D. Yee; Allen H. Goldstein; Samara Carbone; Joel Brito; Paulo Artaxo; J. A. de Gouw; Abigail Koss; Armin Wisthaler; Tomas Mikoviny; Thomas Karl; Lisa Kaser


Environmental Science and Technology Letters | 2015

Heterogeneous Reactions of Isoprene-Derived Epoxides: Reaction Probabilities and Molar Secondary Organic Aerosol Yield Estimates

T. P. Riedel; Ying Hsuan Lin; Sri Hapsari Budisulistiorini; Cassandra J. Gaston; Joel A. Thornton; Zhenfa Zhang; William Vizuete; Avram Gold; Jason D. Surratt


Atmospheric Environment | 2016

Chemical characterization of secondary organic aerosol constituents from isoprene ozonolysis in the presence of acidic aerosol

Matthieu Riva; Sri Hapsari Budisulistiorini; Zhenfa Zhang; Avram Gold; Jason D. Surratt


Atmospheric Chemistry and Physics | 2016

Seasonal characterization of submicron aerosol chemical composition and organic aerosol sources in the southeastern United States: Atlanta, Georgia,and Look Rock, Tennessee

Sri Hapsari Budisulistiorini; Karsten Baumann; Eric S. Edgerton; Solomon T. Bairai; Stephen F. Mueller; Stephanie L. Shaw; Eladio M. Knipping; Avram Gold; Jason D. Surratt

Collaboration


Dive into the Sri Hapsari Budisulistiorini's collaboration.

Top Co-Authors

Avatar

Jason D. Surratt

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Avram Gold

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Zhenfa Zhang

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Manjula R. Canagaratna

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Matthieu Riva

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Stephanie L. Shaw

Electric Power Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eladio M. Knipping

Electric Power Research Institute

View shared research outputs
Top Co-Authors

Avatar

John T. Jayne

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Karsten Baumann

Georgia Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge