Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Srikara V. Peelukhana is active.

Publication


Featured researches published by Srikara V. Peelukhana.


Journal of Biomechanics | 2009

Influence of coronary collateral flow on coronary diagnostic parameters: An in vitro study

Srikara V. Peelukhana; Lloyd H. Back; Rupak K. Banerjee

Functional severity of coronary stenosis is often assessed using diagnostic parameters. These parameters are evaluated from the combined pressure and/or flow measurements taken at the site of the stenosis. However, when there are functional collaterals operating downstream to the stenosis, the coronary flow-rate increases, and the pressure in the stenosed artery is altered. This effect of downstream collaterals on different diagnostic parameters is studied using a physiological representative in vitro coronary flow-loop. The three diagnostic parameters tested are fractional flow reserve (FFR), lesion flow coefficient (LFC), and pressure drop coefficient (CDP). The latter two were discussed in recent publications by our group (Banerjee et al., 2007, 2008, 2009). They are evaluated for three different severities of stenosis and tested for possible misinterpretation in the presence of variable collateral flows. Pressure and flow are measured with and without downstream collaterals. The diagnostic parameters are then calculated from these readings. In the case of intermediate stenosis (80% area blockage), FFR and LFC increased from 0.74 to 0.77 and 0.58 to 0.62, respectively, for no collateral to fully developed collateral flow. Also, CDP decreased from 47 to 42 for no collateral to fully developed collateral flow. These changes in diagnostic parameters might lead to erroneous postponement of coronary intervention. Thus, variability in diagnostic parameters for the same stenosis might lead to misinterpretation of stenosis severity in the presence of operating downstream collaterals.


American Journal of Physiology-heart and Circulatory Physiology | 2011

Influence of heart rate on fractional flow reserve, pressure drop coefficient, and lesion flow coefficient for epicardial coronary stenosis in a porcine model

Kranthi K. Kolli; Rupak K. Banerjee; Srikara V. Peelukhana; Tarek Helmy; Massoud A. Leesar; Imran Arif; Eric W. Schneeberger; Dwight Hand; Paul Succop; William Gottliebson; Mohamed Effat

A limitation in the use of invasive coronary diagnostic indexes is that fluctuations in hemodynamic factors such as heart rate (HR), blood pressure, and contractility may alter resting or hyperemic flow measurements and may introduce uncertainties in the interpretation of these indexes. In this study, we focused on the effect of fluctuations in HR and area stenosis (AS) on diagnostic indexes. We hypothesized that the pressure drop coefficient (CDP(e), ratio of transstenotic pressure drop and distal dynamic pressure), lesion flow coefficient (LFC, square root of ratio of limiting value CDP and CDP at site of stenosis) derived from fluid dynamics principles, and fractional flow reserve (FFR, ratio of average distal and proximal pressures) are independent of HR and can significantly differentiate between the severity of stenosis. Cardiac catheterization was performed on 11 Yorkshire pigs. Simultaneous measurements of distal coronary arterial pressure and flow were performed using a dual sensor-tipped guidewire for HR < 120 and HR > 120 beats/min, in the presence of epicardial coronary lesions of <50% AS and >50% AS. The mean values of FFR, CDP(e), and LFC were significantly different (P < 0.05) for lesions of <50% AS and >50% AS (0.88 ± 0.04, 0.76 ± 0.04; 62 ± 30, 151 ± 35, and 0.10 ± 0.02 and 0.16 ± 0.01, respectively). The mean values of FFR and CDP(e) were not significantly different (P > 0.05) for variable HR conditions of HR < 120 and HR > 120 beats/min (FFR, 0.81 ± 0.04 and 0.82 ± 0.04; and CDP(e), 95 ± 33 and 118 ± 36). The mean values of LFC do somewhat vary with HR (0.14 ± 0.01 and 0.12 ± 0.02). In conclusion, fluctuations in HR have no significant influence on the measured values of CDP(e) and FFR but have a marginal influence on the measured values of LFC. However, all three parameters can significantly differentiate between stenosis severities. These results suggest that the diagnostic parameters can be potentially used in a better assessment of coronary stenosis severity under a clinical setting.


Catheterization and Cardiovascular Interventions | 2014

Functional diagnosis of coronary stenoses using pressure drop coefficient: a pilot study in humans.

Kranthi K. Kolli; Tarek Helmy; Srikara V. Peelukhana; Imran Arif; Massoud A. Leesar; Lloyd H. Back; Rupak K. Banerjee; Mohamed Effat

Myocardial fractional flow reserve (FFR) in conjunction with coronary flow reserve (CFR) is used to evaluate the hemodynamic severity of coronary lesions. However, discordant results between FFR and CFR have been observed in intermediate coronary lesions. A functional parameter, pressure drop coefficient (CDP; ratio of pressure drop to distal dynamic pressure), was assessed using intracoronary pressure drop (dp) and average peak velocity (APV). The CDP is a nondimensional ratio, derived from fundamental fluid dynamic principles. We sought to evaluate the correlation of CDP with FFR, CFR, and hyperemic stenosis resistance (HSR: ratio of pressure drop to APV) in human subjects.


American Journal of Physiology-heart and Circulatory Physiology | 2012

Effect of heart rate on hemodynamic endpoints under concomitant microvascular disease in a porcine model

Srikara V. Peelukhana; Rupak K. Banerjee; Kranthi K. Kolli; Mohamed Effat; Tarek Helmy; Massoud A. Leesar; Eric W. Schneeberger; Paul Succop; William Gottliebson; A. Irif

Diagnosis of the ischemic power of epicardial stenosis with concomitant microvascular disease (MVD) is challenging during coronary interventions, especially under variable hemodynamic factors like heart rate (HR). The goal of this study is to assess the influence of variable HR and percent area stenosis (%AS) in the presence of MVD on pressure drop coefficient (CDP; ratio of transstenotic pressure drop to the distal dynamic pressure) and lesion flow coefficient (LFC; ratio of %AS to the CDP at the throat region). We hypothesize that CDP and LFC are independent of HR. %AS and MVD were created using angioplasty balloons and 90-μm microspheres, respectively. Simultaneous measurements of pressure drop (DP) and velocity were done in 11 Yorkshire pigs. Fractional flow reserve (FFR), CDP, and LFC were calculated for the groups HR < 120 and HR > 120 beats/min, %AS < 50 and %AS > 50, and additionally for DP < 14 and DP > 14 mmHg, and analyzed using regression and ANOVA analysis. Regression analysis showed independence between HR and the FFR, CDP, and LFC while it showed dependence between %AS and the FFR, CDP, and LFC. In the ANOVA analysis, for the HR < 120 beats/min and HR > 120 beats/min groups, the values of FFR (0.82 ± 0.02 and 0.82 ± 0.02), CDP (83.15 ± 26.19 and 98.62 ± 26.04), and LFC (0.16 ± 0.03 and 0.15 ± 0.03) were not significantly different (P > 0.05). However, for %AS < 50 and %AS > 50, the FFR (0.89 ± 0.02 and 0.75 ± 0.02), CDP (35.97 ± 25.79.10 and 143.80 ± 25.41), and LFC (0.09 ± 0.03 and 0.22 ± 0.03) were significantly different (P < 0.05). A similar trend was observed between the DP groups. Under MVD conditions, FFR, CDP, and LFC were not significantly influenced by changes in HR, while they can significantly distinguish %AS and DP groups.


Heart and Vessels | 2014

Effect of myocardial contractility on hemodynamic end points under concomitant microvascular disease in a porcine model

Srikara V. Peelukhana; Kranthi K. Kolli; Massoud A. Leesar; Mohamed Effat; Tarek Helmy; Imran Arif; Eric W. Schneeberger; Paul Succop; Rupak K. Banerjee

In this study, coronary diagnostic parameters, pressure drop coefficient (CDP: ratio of trans-stenotic pressure drop to distal dynamic pressure), and lesion flow coefficient (LFC: ratio of % area stenosis (%AS) to the CDP at throat region), were evaluated to distinguish levels of %AS under varying contractility conditions, in the presence of microvascular disease (MVD). In 10 pigs, %AS and MVD were created using angioplasty balloons and 90-μm microspheres, respectively. Simultaneous measurements of pressure drop, left ventricular pressure (p), and velocity were obtained. Contractility was calculated as (dp/dt)max, categorized into low contractility <900 mmHg/s and high contractility >900 mmHg/s, and in each group, compared between %AS <50 and >50 using analysis of variance. In the presence of MVD, between the %AS <50 and >50 groups, values of CDP (71 ± 1.4 and 121 ± 1.3) and LFC (0.10 ± 0.04 and 0.19 ± 0.04) were significantly different (P < 0.05), under low-contractility conditions. A similar %AS trend was observed under high-contractility conditions (CDP: 18 ± 1.4 and 91 ± 1.4; LFC: 0.08 ± 0.04 and 0.25 ± 0.04). Under MVD conditions, similar to fractional flow reserve, CDP and LFC were not influenced by contractility.


Journal of Biomechanics | 2014

Influence of newly designed monorail pressure sensor catheter on coronary diagnostic parameters: An in vitro study

Rupak K. Banerjee; Srikara V. Peelukhana; Ishan Goswami

The decision to perform intervention on a patient with coronary stenosis is often based on functional diagnostic parameters obtained from pressure and flow measurements using sensor-tipped guidewire at maximal vasodilation (hyperemia). Recently, a rapid exchange Monorail Pressure Sensor catheter of 0.022″ diameter (MPS22), with pressure sensor at distal end has been developed for improved assessment of stenosis severity. The hollow shaft of the MPS22 is designed to slide over any standard 0.014″ guidewire (G14). Hence, influence of MPS22 diameter on coronary diagnostic parameters needs investigation. An in vitro experiment was conducted to replicate physiologic flows in three representative area stenosis (AS): mild (64% AS), intermediate (80% AS), and severe (90% AS), for two arterial diameters, 3mm (N2; more common) and 2.5mm (N1). Influence of MPS22 on diagnostic parameters: fractional flow reserve (FFR) and pressure drop coefficient (CDP) was evaluated both at hyperemic and basal conditions, while comparing it with G14. The FFR values decreased for the MPS22 in comparison to G14, (Mild: 0.87 vs 0.88, Intermediate: 0.68 vs 0.73, Severe: 0.48 vs 0.56) and CDP values increased (Mild: 16 vs 14, Intermediate: 75 vs 56, Severe: 370 vs 182) for N2. Similar trend was observed in the case of N1. The FFR values were found to be well above (mild) and below (intermediate and severe) the diagnostic cut-off of 0.75. Therefore, MPS22 catheter can be used as a possible alternative to G14. Further, irrespective of the MPS22 or G14, basal FFR (FFRb) had overlapping ranges in close proximity for clinically relevant mild and intermediate stenoses that will lead to diagnostic uncertainty under both N1 and N2. However, CDPb had distinct ranges for different stenosis severities and could be a potential diagnostic parameter under basal conditions.


Journal of Biomechanical Engineering-transactions of The Asme | 2013

Influence of Variable Native Arterial Diameter and Vasculature Status on Coronary Diagnostic Parameters

Ishan Goswami; Srikara V. Peelukhana; Marwan F. Al-Rjoub; Lloyd H. Back; Rupak K. Banerjee

In current practice, diagnostic parameters, such as fractional flow reserve (FFR) and coronary flow reserve (CFR), are used to determine the severity of a coronary artery stenosis. FFR is defined as the ratio of hyperemic pressures distal (p(rh)) and proximal (p(ah)) to a stenosis. CFR is the ratio of flow at hyperemic and basal condition. Another diagnostic parameter suggested by our group is the pressure drop coefficient (CDP). CDP is defined as the ratio of the pressure drop across the stenosis to the upstream dynamic pressure. These parameters are evaluated by invasively measuring flow (CFR), pressure (FFR), or both (CDP) in a diseased artery using guidewire tipped with a sensor. Pathologic state of artery is indicated by lower CFR (<2). Similarly, FFR lower than 0.75 leads to clinical intervention. Cutoff for CDP is under investigation. Diameter and vascular condition influence both flow and pressure drop, and thus, their effect on FFR and CDP was studied. In vitro experiment coupled with pressure-flow relationships from human clinical data was used to simulate pathophysiologic conditions in two representative arterial diameters, 2.5 mm (N1) and 3 mm (N2). With a 0.014 in. (0.35 mm) guidewire inserted, diagnostic parameters were evaluated for mild (∼64% area stenosis (AS)), intermediate (∼80% AS), and severe (∼90% AS) stenosis for both N1 and N2 arteries, and between two conditions, with and without myocardial infarction (MI). Arterial diameter did not influence FFR for clinically relevant cases of mild and intermediate stenosis (difference < 5%). Stenosis severity was underestimated due to higher FFR (mild: ∼9%, intermediate: ∼ 20%, severe: ∼ 30%) for MI condition because of lower pressure drops, and this may affect clinical decision making. CDP varied with diameter (mild: ∼20%, intermediate: ∼24%, severe: by 2.5 times), and vascular condition (mild: ∼35%, intermediate: ∼14%, severe: ∼ 9%). However, nonoverlapping range of CDP allowed better delineation of stenosis severities irrespective of diameter and vascular condition.


Catheterization and Cardiovascular Interventions | 2016

Diagnostic cutoff for pressure drop coefficient in relation to fractional flow reserve and coronary flow reserve: A patient-level analysis

Kranthi K. Kolli; Tim P. van de Hoef; Mohamed Effat; Pe Rupak K. Banerjee PhD; Srikara V. Peelukhana; Paul Succop; Massoud A. Leesar; Arif Imran; Jan J. Piek; Tarek Helmy

Functional assessment of intermediate coronary stenosis during cardiac catheterization is conducted using diagnostic parameters like fractional flow reserve (FFR), coronary flow reserve (CFR), hyperemic stenosis resistance index (HSR), and hyperemic microvascular resistance (HMR). CDP (ratio of pressure drop across a stenosis to distal dynamic pressure), a nondimensional index derived from fundamental fluid dynamic principles, based on a combination of intracoronary pressure, and flow measurements may improve the functional assessment of coronary lesion severity.


Cardiovascular Revascularization Medicine | 2017

Evaluation of lesion flow coefficient for the detection of coronary artery disease in patient groups from two academic medical centers

Srikara V. Peelukhana; Rupak K. Banerjee; Tim P. van de Hoef; Kranthi K. Kolli; Mohamed Effat; Tarek Helmy; Massoud A. Leesar; Hanan Kerr; Jan J. Piek; Paul Succop; Lloyd H. Back; Imran Arif

BACKGROUND In this study, lesion flow coefficient (LFC: ratio of % area stenosis [%AS] to the square root of the ratio of the pressure drop across the stenosis to the dynamic pressure in the throat region), that combines both the anatomical (%AS) and functional measurements (pressure and flow), was assessed for application in a clinical setting. METHODS AND RESULTS Pressure, flow, and anatomical values were obtained from patients in 251 vessels from two different centers. Fractional flow reserve (FFR), Coronary flow reserve (CFR), hyperemic stenosis resistance index (HSR) and hyperemic microvascular index (HMR) were calculated. Anatomical data was corrected for the presence of guidewire and the LFC values were calculated. LFC was correlated with FFR, CFR, HSR, HMR, individually and in combination with %AS. The p<0.05 was used for statistical significance. LFC correlated significantly when the FFR (pressure-based), CFR (flow-based), and anatomical measure %AS were combined (r=0.64; p<0.05). Similarly, LFC correlated significantly when HSR, HMR, and %AS were combined (r=0.72; p<0.05). LFC was able to significantly (p<0.05) distinguish between the two concordant and the two discordant groups of FFR and CFR, corresponding to the clinically used cut-off values (FFR=0.80 and CFR=2.0). The LFC could also significantly (p<0.05) distinguish between the normal and abnormal microvasculature conditions in the presence of non-significant epicardial stenosis, while the comparison was borderline significant (p=0.09) in the presence of significant stenosis. CONCLUSION LFC, a parameter that combines both the anatomical and functional end-points, has the potential for application in a clinical setting for CAD evaluation.


Nuclear Medicine Communications | 2015

Benefit of ECG-gated rest and stress N-13 cardiac PET imaging for quantification of LVEF in ischemic patients.

Srikara V. Peelukhana; Rupak K. Banerjee; Kranthi K. Kolli; Mariano Fernandez-Ulloa; Imran Arif; Mohamed Effat; Tarek Helmy; Hanan Kerr

BackgroundECG-gated rest–stress cardiac PET can lead to simultaneous quantification of both left ventricular ejection fraction and flow impairment. In this study, our aim was to assess the benefit of rest and stress PET ejection fraction (EF) (EFp) in relation to single-photon emission computed tomography (SPECT) EF (EFs) and echocardiography EF (EFe). To this effect, the EFp was compared with EFs and EFe. Further, the relation between rest and stress EFp was also assessed. MethodsECG-gated N-13 ammonia rest and stress PET imaging was performed in 26 patients. EFp values were obtained using gated reconstruction of the data in Flowquant. In 13 patients, EFs and EFe values were obtained through chart review. Correlation, analysis of variance, and Bland–Altman analyses were performed. P values less than 0.05 were used for statistical significance. ResultsThe rest and stress EFp values correlated significantly (r=0.80 and 0.71, respectively; P<0.05) with EFs values. There was moderate correlation with statistical significance (P<0.05) between the rest and stress EFp and EFe values (r=0.58 and 0.50, respectively). The mean rest and stress EFp values were not significantly different from mean EFs values. Also, the rest EFp and stress EFp values correlated well (r=0.81, P<0.05) and were not significantly different. Bland–Altman analysis showed no significant bias between the rest and stress EFp, and EFs, and EFe values. ConclusionRest and stress EFp values obtained through an ECG-gated PET scan can be used for clinical diagnosis in place of conventional methods like SPECT and echocardiography.

Collaboration


Dive into the Srikara V. Peelukhana's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mohamed Effat

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tarek Helmy

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Massoud A. Leesar

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Imran Arif

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Paul Succop

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lloyd H. Back

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

William Gottliebson

Cincinnati Children's Hospital Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge