Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Srilakshmi Yalavarthi is active.

Publication


Featured researches published by Srilakshmi Yalavarthi.


Journal of Immunology | 2011

Netting Neutrophils Induce Endothelial Damage, Infiltrate Tissues, and Expose Immunostimulatory Molecules in Systemic Lupus Erythematosus

Eneida C. Villanueva; Srilakshmi Yalavarthi; Celine C. Berthier; Jeffrey B. Hodgin; Ritika Khandpur; Andrew M. Lin; Cory J. Rubin; Wenpu Zhao; Stephen H. Olsen; Matthew W. Klinker; David Shealy; Michael F. Denny; Joel Plumas; Laurence Chaperot; Matthias Kretzler; Allen T. Bruce; Mariana J. Kaplan

An abnormal neutrophil subset has been identified in the PBMC fractions from lupus patients. We have proposed that these low-density granulocytes (LDGs) play an important role in lupus pathogenesis by damaging endothelial cells and synthesizing increased levels of proinflammatory cytokines and type I IFNs. To directly establish LDGs as a distinct neutrophil subset, their gene array profiles were compared with those of autologous normal-density neutrophils and control neutrophils. LDGs significantly overexpress mRNA of various immunostimulatory bactericidal proteins and alarmins, relative to lupus and control neutrophils. In contrast, gene profiles of lupus normal-density neutrophils do not differ from those of controls. LDGs have heightened capacity to synthesize neutrophils extracellular traps (NETs), which display increased externalization of bactericidal, immunostimulatory proteins, and autoantigens, including LL-37, IL-17, and dsDNA. Through NETosis, LDGs have increased capacity to kill endothelial cells and to stimulate IFN-α synthesis by plasmacytoid dendritic cells. Affected skin and kidneys from lupus patients are infiltrated by netting neutrophils, which expose LL-37 and dsDNA. Tissue NETosis is associated with increased anti-dsDNA in sera. These results expand the potential pathogenic roles of aberrant lupus neutrophils and suggest that dysregulation of NET formation and its subsequent responses may play a prominent deleterious role.


Journal of Immunology | 2011

Mast cells and neutrophils release IL-17 through extracellular trap formation in psoriasis

Andrew M. Lin; Cory J. Rubin; Ritika Khandpur; Jennifer Y. Wang; MaryBeth Riblett; Srilakshmi Yalavarthi; Eneida C. Villanueva; Parth Shah; Mariana J. Kaplan; Allen T. Bruce

IL-17 and IL-23 are known to be absolutely central to psoriasis pathogenesis because drugs targeting either cytokine are highly effective treatments for this disease. The efficacy of these drugs has been attributed to blocking the function of IL-17–producing T cells and their IL-23–induced expansion. However, we demonstrate that mast cells and neutrophils, not T cells, are the predominant cell types that contain IL-17 in human skin. IL-17+ mast cells and neutrophils are found at higher densities than IL-17+ T cells in psoriasis lesions and frequently release IL-17 in the process of forming specialized structures called extracellular traps. Furthermore, we find that IL-23 and IL-1β can induce mast cell extracellular trap formation and degranulation of human mast cells. Release of IL-17 from innate immune cells may be central to the pathogenesis of psoriasis, representing a fundamental mechanism by which the IL-23–IL-17 axis mediates host defense and autoimmunity.


Science Translational Medicine | 2013

NETs Are a Source of Citrullinated Autoantigens and Stimulate Inflammatory Responses in Rheumatoid Arthritis

Ritika Khandpur; Carmelo Carmona-Rivera; Anuradha Vivekanandan-Giri; Alison M. Gizinski; Srilakshmi Yalavarthi; Jason S. Knight; Sean C. Friday; Sam Li; Rajiv M. Patel; Venkataraman Subramanian; Paul R. Thompson; Pojen Chen; David A. Fox; Subramaniam Pennathur; Mariana J. Kaplan

Neutrophil NETs may contribute to pathogenesis of rheumatoid arthritis. Autoantigens Slip Through the NET Autoimmune diseases are caused when the body’s immune system attacks the very tissues it’s supposed to protect. Yet, what exactly induces this loss of tolerance to self remains murky. For some autoimmune diseases, autoantigens—cellular targets of the immune response—have been identified, although it remains unclear how these normally intracellular proteins are exposed to the immune response. One hypothesis as to how these proteins may be externalized is through the excretion of neutrophil extracellular traps (NETosis). NETosis is thought to be involved in neutrophil response to bacteria, but the secretion of self-antigens in the context of inflammatory stimuli may boost autoimmune response. Now, Khandpur et al. look at the role of NETosis in rheumatoid arthritis. Autoantibodies to citrullinated antigens (ACPAs) are thought to be pathogenic in rheumatoid arthritis. The authors observed increased NETosis in patients with rheumatoid arthritis compared with both healthy controls and patients with non-autoimmune osteoarthritis. Indeed, NETosis correlated with levels of ACPA, and ACPA actually altered the makeup of the proteins secreted by neutrophils. NETs from rheumatoid arthritis patients contained citrullinated proteins, and these NETs enhanced the inflammatory response in fibroblasts from inflamed joints. Thus, altered NETosis in rheumatoid arthritis patients may contribute to the pathogenesis of disease. The early events leading to the development of rheumatoid arthritis (RA) remain unclear, but formation of autoantibodies to citrullinated protein antigens (ACPAs) is considered a key pathogenic event. Neutrophils isolated from patients with various autoimmune diseases display enhanced neutrophil extracellular trap (NET) formation, a phenomenon that exposes autoantigens in the context of immunostimulatory molecules. We investigated whether aberrant NETosis occurs in RA, determined its triggers, and examined its deleterious inflammatory consequences. Enhanced NETosis was observed in circulating and RA synovial fluid neutrophils compared to neutrophils from healthy controls and from patients with osteoarthritis (OA). Further, netting neutrophils infiltrated RA synovial tissue, rheumatoid nodules, and skin. NETosis correlated with ACPA presence and levels and with systemic inflammatory markers. RA sera and immunoglobulin fractions from RA patients with high levels of ACPA and/or rheumatoid factor significantly enhanced NETosis, and the NETs induced by these autoantibodies displayed distinct protein content. Indeed, during NETosis, neutrophils externalized the citrullinated autoantigens implicated in RA pathogenesis, and anti–citrullinated vimentin antibodies potently induced NET formation. Moreover, the inflammatory cytokines interleukin-17A (IL-17A) and tumor necrosis factor–α (TNF-α) induced NETosis in RA neutrophils. In turn, NETs significantly augmented inflammatory responses in RA and OA synovial fibroblasts, including induction of IL-6, IL-8, chemokines, and adhesion molecules. These observations implicate accelerated NETosis in RA pathogenesis, through externalization of citrullinated autoantigens and immunostimulatory molecules that may promote aberrant adaptive and innate immune responses in the joint and in the periphery, and perpetuate pathogenic mechanisms in this disease.


Journal of Immunology | 2010

A Distinct Subset of Proinflammatory Neutrophils Isolated from Patients with Systemic Lupus Erythematosus Induces Vascular Damage and Synthesizes Type I IFNs

Michael F. Denny; Srilakshmi Yalavarthi; Wenpu Zhao; Seth G. Thacker; Marc R Anderson; Ashley R. Sandy; W. Joseph McCune; Mariana J. Kaplan

Neutrophil-specific genes are abundant in PBMC microarrays from lupus patients because of the presence of low-density granulocytes (LDGs) in mononuclear cell fractions. The functionality and pathogenicity of these LDGs have not been characterized. We developed a technique to purify LDGs from lupus PBMCs and assessed their phenotype, function, and potential role in disease pathogenesis. LDGs, their autologous lupus neutrophils, and healthy control neutrophils were compared with regard to their microbicidal and phagocytic capacities, generation of reactive oxygen species, activation status, inflammatory cytokine profile, and type I IFN expression and signatures. The capacity of LDGs to kill endothelial cells and their antiangiogenic potential were also assessed. LDGs display an activated phenotype, secrete increased levels of type I IFNs, TNF-α, and IFN-γ, but show impaired phagocytic potential. LDGs induce significant endothelial cell cytotoxicity and synthesize sufficient levels of type I IFNs to disrupt the capacity of endothelial progenitor cells to differentiate into mature endothelial cells. LDG depletion restores the functional capacity of endothelial progenitor cells. We conclude that lupus LDGs are proinflammatory and display pathogenic features, including the capacity to synthesize type I IFNs. They may play an important dual role in premature cardiovascular disease development in systemic lupus erythematosus by simultaneously mediating enhanced vascular damage and inhibiting vascular repair.


Journal of Clinical Investigation | 2013

Peptidylarginine deiminase inhibition is immunomodulatory and vasculoprotective in murine lupus

Jason S. Knight; Wenpu Zhao; Wei Luo; Venkataraman Subramanian; Alexander A. O’Dell; Srilakshmi Yalavarthi; Jeffrey B. Hodgin; Daniel T. Eitzman; Paul R. Thompson; Mariana J. Kaplan

Recent evidence suggests that enhanced neutrophil extracellular trap (NET) formation activates plasmacytoid dendritic cells and serves as a source of autoantigens in SLE. We propose that aberrant NET formation is also linked to organ damage and to the premature vascular disease characteristic of human SLE. Here, we demonstrate enhanced NET formation in the New Zealand mixed 2328 (NZM) model of murine lupus. NZM mice also developed autoantibodies to NETs as well as the ortholog of human cathelicidin/LL37 (CRAMP), a molecule externalized in the NETs. NZM mice were treated with Cl-amidine, an inhibitor of peptidylarginine deiminases (PAD), to block NET formation and were evaluated for lupus-like disease activity, endothelial function, and prothrombotic phenotype. Cl-amidine treatment inhibited NZM NET formation in vivo and significantly altered circulating autoantibody profiles and complement levels while reducing glomerular IgG deposition. Further, Cl-amidine increased the differentiation capacity of bone marrow endothelial progenitor cells, improved endothelium-dependent vasorelaxation, and markedly delayed time to arterial thrombosis induced by photochemical injury. Overall, these findings suggest that PAD inhibition can modulate phenotypes crucial for lupus pathogenesis and disease activity and may represent an important strategy for mitigating cardiovascular risk in lupus patients.


Annals of the Rheumatic Diseases | 2015

Neutrophil extracellular traps induce endothelial dysfunction in systemic lupus erythematosus through the activation of matrix metalloproteinase-2

Carmelo Carmona-Rivera; Wenpu Zhao; Srilakshmi Yalavarthi; Mariana J. Kaplan

Rationale The structural and functional integrity of the endothelium is crucial in maintaining vascular homeostasis and preventing atherosclerosis. Patients with systemic lupus erythematosus (SLE) have an increased risk of developing endothelial dysfunction and premature cardiovascular disease. Neutrophil extracellular trap (NET) formation is increased in SLE and has been proposed to contribute to endothelial damage, but the mechanism remains unclear. Objective To determine the mechanism by which enhanced NET formation by low-density granulocytes (LDGs) in SLE contributes to endothelial damage and disrupts the endothelium. Results The putative role of NET-externalised matrix metalloproteinases (MMPs) in altering the functional integrity of the endothelium was examined. MMP-9 externalised by lupus LDGs during NET formation specifically impaired murine aortic endothelium-dependent vasorelaxation and induced endothelial cell apoptosis. Endothelial dysfunction correlated with the activation of endothelial MMP-2 by MMP-9 present in NETs, while inhibition of MMP-2 activation restored endothelium-dependent function and decreased NET-induced vascular cytotoxicity. Moreover, immunogenic complexes composed of MMP-9 and anti-MMP-9 were identified in SLE sera. These complexes, as well as anti-MMP-9 autoantibodies, induced NETosis and enhanced MMP-9 activity. Conclusions These observations implicate activation of endothelial MMP-2 by MMP-9 contained in NETs as an important player in endothelial dysfunction, and MMP-9 as a novel self-antigen in SLE. These results further support that aberrant NET formation plays pathogenic roles in SLE.


Circulation Research | 2014

Peptidylarginine Deiminase Inhibition Reduces Vascular Damage and Modulates Innate Immune Responses in Murine Models of Atherosclerosis

Jason S. Knight; Wei Luo; Alexander A. O’Dell; Srilakshmi Yalavarthi; Wenpu Zhao; Venkataraman Subramanian; Chiao Guo; Robert C. Grenn; Paul R. Thompson; Daniel T. Eitzman; Mariana J. Kaplan

Rationale: Neutrophil extracellular trap (NET) formation promotes vascular damage, thrombosis, and activation of interferon-&agr;–producing plasmacytoid dendritic cells in diseased arteries. Peptidylarginine deiminase inhibition is a strategy that can decrease in vivo NET formation. Objective: To test whether peptidylarginine deiminase inhibition, a novel approach to targeting arterial disease, can reduce vascular damage and inhibit innate immune responses in murine models of atherosclerosis. Methods and Results: Apolipoprotein-E (Apoe)−/− mice demonstrated enhanced NET formation, developed autoantibodies to NETs, and expressed high levels of interferon-&agr; in diseased arteries. Apoe−/− mice were treated for 11 weeks with daily injections of Cl-amidine, a peptidylarginine deiminase inhibitor. Peptidylarginine deiminase inhibition blocked NET formation, reduced atherosclerotic lesion area, and delayed time to carotid artery thrombosis in a photochemical injury model. Decreases in atherosclerosis burden were accompanied by reduced recruitment of netting neutrophils and macrophages to arteries, as well as by reduced arterial interferon-&agr; expression. Conclusions: Pharmacological interventions that block NET formation can reduce atherosclerosis burden and arterial thrombosis in murine systems. These results support a role for aberrant NET formation in the pathogenesis of atherosclerosis through modulation of innate immune responses.


Annals of the Rheumatic Diseases | 2015

Peptidylarginine deiminase inhibition disrupts NET formation and protects against kidney, skin and vascular disease in lupus-prone MRL/lpr mice

Jason S. Knight; Venkataraman Subramanian; Alexander A O'Dell; Srilakshmi Yalavarthi; Wenpu Zhao; Carolyne K. Smith; Jeffrey B. Hodgin; Paul R. Thompson; Mariana J. Kaplan

Objectives An imbalance between neutrophil extracellular trap (NET) formation and degradation has been described in systemic lupus erythematosus (SLE), potentially contributing to autoantigen externalisation, type I interferon synthesis and endothelial damage. We have demonstrated that peptidylarginine deiminase (PAD) inhibition reduces NET formation and protects against lupus-related vascular damage in the New Zealand Mixed model of lupus. However, another strategy for inhibiting NETs—knockout of NOX2—accelerates lupus in a different murine model, MRL/lpr. Here, we test the effects of PAD inhibition on MRL/lpr mice in order to clarify whether some NET inhibitory pathways may be consistently therapeutic across models of SLE. Methods NET formation and autoantibodies to NETs were characterised in lupus-prone MRL/lpr mice. MRL/lpr mice were also treated with two different PAD inhibitors, Cl-amidine and the newly described BB-Cl-amidine. NET formation, endothelial function, interferon signature, nephritis and skin disease were examined in treated mice. Results Neutrophils from MRL/lpr mice demonstrate accelerated NET formation compared with controls. MRL/lpr mice also form autoantibodies to NETs and have evidence of endothelial dysfunction. PAD inhibition markedly improves endothelial function, while downregulating the expression of type I interferon-regulated genes. PAD inhibition also reduces proteinuria and immune complex deposition in the kidneys, while protecting against skin disease. Conclusions PAD inhibition reduces NET formation, while protecting against lupus-related damage to the vasculature, kidneys and skin in various lupus models. The strategy by which NETs are inhibited will have to be carefully considered if human studies are to be undertaken.


Arthritis & Rheumatism | 2015

Release of neutrophil extracellular traps by neutrophils stimulated with antiphospholipid antibodies: a newly identified mechanism of thrombosis in the antiphospholipid syndrome.

Srilakshmi Yalavarthi; Travis J. Gould; Ashish N. Rao; Levi F. Mazza; Alexandra E. Morris; Carlos A. Núñez-Álvarez; Diego F. Hernández-Ramírez; Paula L. Bockenstedt; Patricia C. Liaw; Antonio R. Cabral; Jason S. Knight

Antiphospholipid antibodies (aPL), especially those targeting β2‐glycoprotein I (β2GPI), are well known to activate endothelial cells, monocytes, and platelets, with prothrombotic implications. In contrast, the interaction of aPL with neutrophils has not been extensively studied. Neutrophil extracellular traps (NETs) have recently been recognized as an important activator of the coagulation cascade, as well as an integral component of arterial and venous thrombi. This study was undertaken to determine whether aPL activate neutrophils to release NETs, thereby predisposing to the arterial and venous thrombosis inherent in the antiphospholipid syndrome (APS).


Journal of Autoimmunity | 2015

Epigenome profiling reveals significant DNA demethylation of interferon signature genes in lupus neutrophils.

Patrick Coit; Srilakshmi Yalavarthi; Mikhail Ognenovski; Wenpu Zhao; Sarfaraz Hasni; Jonathan D. Wren; Mariana J. Kaplan; Amr H. Sawalha

Recent evidence suggests that neutrophils play an important role in the pathogenesis of lupus. The goal of this study was to characterize the epigenetic architecture, by studying the DNA methylome, of neutrophils and low density granulocytes (LDGs) in lupus patients. We studied 15 lupus patients and 15 healthy age, sex, and ethnicity matched controls. Genome-wide DNA methylation was assessed using the Illumina HumanMethylation 450 BeadChip array, which includes over 485,000 methylation sites across the entire genome. Bisulfite DNA sequencing was used to validate the array results. Statistical and bioinformatic analysis was performed to identify and characterize differentially methylated loci and genes. We identified 293 differentially methylated CG sites in neutrophils between lupus patients and controls. The majority (68%) of differentially methylated CG sites were hypomethylated in lupus neutrophils compared to controls, suggesting overall hypomethylation. We found a robust and consistent demethylation of interferon signature genes in lupus neutrophils, and similar demethylation in the same genes in autologous LDGs. Indeed, the DNA methylome in lupus neutrophils and LDGs was almost identical, suggesting similar chromatin architecture in the two granulocyte subsets. A notable exception was the hypomethylation of a CG site in the promoter region of the cytoskeleton-regulating gene RAC1 in LDGs. Our findings demonstrate a pattern of robust demethylation of interferon signature genes in lupus patients supporting a pathogenic role for neutrophils in lupus. We suggest a model whereby DNA from lupus neutrophils and LDGs externalized by NETosis enhance type-I IFN production via TLR-9 stimulation by hypomethylated DNA.

Collaboration


Dive into the Srilakshmi Yalavarthi's collaboration.

Top Co-Authors

Avatar

Mariana J. Kaplan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wenpu Zhao

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul R. Thompson

University of Massachusetts Medical School

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge