Wenpu Zhao
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wenpu Zhao.
Journal of Immunology | 2011
Eneida C. Villanueva; Srilakshmi Yalavarthi; Celine C. Berthier; Jeffrey B. Hodgin; Ritika Khandpur; Andrew M. Lin; Cory J. Rubin; Wenpu Zhao; Stephen H. Olsen; Matthew W. Klinker; David Shealy; Michael F. Denny; Joel Plumas; Laurence Chaperot; Matthias Kretzler; Allen T. Bruce; Mariana J. Kaplan
An abnormal neutrophil subset has been identified in the PBMC fractions from lupus patients. We have proposed that these low-density granulocytes (LDGs) play an important role in lupus pathogenesis by damaging endothelial cells and synthesizing increased levels of proinflammatory cytokines and type I IFNs. To directly establish LDGs as a distinct neutrophil subset, their gene array profiles were compared with those of autologous normal-density neutrophils and control neutrophils. LDGs significantly overexpress mRNA of various immunostimulatory bactericidal proteins and alarmins, relative to lupus and control neutrophils. In contrast, gene profiles of lupus normal-density neutrophils do not differ from those of controls. LDGs have heightened capacity to synthesize neutrophils extracellular traps (NETs), which display increased externalization of bactericidal, immunostimulatory proteins, and autoantigens, including LL-37, IL-17, and dsDNA. Through NETosis, LDGs have increased capacity to kill endothelial cells and to stimulate IFN-α synthesis by plasmacytoid dendritic cells. Affected skin and kidneys from lupus patients are infiltrated by netting neutrophils, which expose LL-37 and dsDNA. Tissue NETosis is associated with increased anti-dsDNA in sera. These results expand the potential pathogenic roles of aberrant lupus neutrophils and suggest that dysregulation of NET formation and its subsequent responses may play a prominent deleterious role.
Journal of Immunology | 2010
Michael F. Denny; Srilakshmi Yalavarthi; Wenpu Zhao; Seth G. Thacker; Marc R Anderson; Ashley R. Sandy; W. Joseph McCune; Mariana J. Kaplan
Neutrophil-specific genes are abundant in PBMC microarrays from lupus patients because of the presence of low-density granulocytes (LDGs) in mononuclear cell fractions. The functionality and pathogenicity of these LDGs have not been characterized. We developed a technique to purify LDGs from lupus PBMCs and assessed their phenotype, function, and potential role in disease pathogenesis. LDGs, their autologous lupus neutrophils, and healthy control neutrophils were compared with regard to their microbicidal and phagocytic capacities, generation of reactive oxygen species, activation status, inflammatory cytokine profile, and type I IFN expression and signatures. The capacity of LDGs to kill endothelial cells and their antiangiogenic potential were also assessed. LDGs display an activated phenotype, secrete increased levels of type I IFNs, TNF-α, and IFN-γ, but show impaired phagocytic potential. LDGs induce significant endothelial cell cytotoxicity and synthesize sufficient levels of type I IFNs to disrupt the capacity of endothelial progenitor cells to differentiate into mature endothelial cells. LDG depletion restores the functional capacity of endothelial progenitor cells. We conclude that lupus LDGs are proinflammatory and display pathogenic features, including the capacity to synthesize type I IFNs. They may play an important dual role in premature cardiovascular disease development in systemic lupus erythematosus by simultaneously mediating enhanced vascular damage and inhibiting vascular repair.
Journal of Clinical Investigation | 2013
Jason S. Knight; Wenpu Zhao; Wei Luo; Venkataraman Subramanian; Alexander A. O’Dell; Srilakshmi Yalavarthi; Jeffrey B. Hodgin; Daniel T. Eitzman; Paul R. Thompson; Mariana J. Kaplan
Recent evidence suggests that enhanced neutrophil extracellular trap (NET) formation activates plasmacytoid dendritic cells and serves as a source of autoantigens in SLE. We propose that aberrant NET formation is also linked to organ damage and to the premature vascular disease characteristic of human SLE. Here, we demonstrate enhanced NET formation in the New Zealand mixed 2328 (NZM) model of murine lupus. NZM mice also developed autoantibodies to NETs as well as the ortholog of human cathelicidin/LL37 (CRAMP), a molecule externalized in the NETs. NZM mice were treated with Cl-amidine, an inhibitor of peptidylarginine deiminases (PAD), to block NET formation and were evaluated for lupus-like disease activity, endothelial function, and prothrombotic phenotype. Cl-amidine treatment inhibited NZM NET formation in vivo and significantly altered circulating autoantibody profiles and complement levels while reducing glomerular IgG deposition. Further, Cl-amidine increased the differentiation capacity of bone marrow endothelial progenitor cells, improved endothelium-dependent vasorelaxation, and markedly delayed time to arterial thrombosis induced by photochemical injury. Overall, these findings suggest that PAD inhibition can modulate phenotypes crucial for lupus pathogenesis and disease activity and may represent an important strategy for mitigating cardiovascular risk in lupus patients.
Annals of the Rheumatic Diseases | 2015
Carmelo Carmona-Rivera; Wenpu Zhao; Srilakshmi Yalavarthi; Mariana J. Kaplan
Rationale The structural and functional integrity of the endothelium is crucial in maintaining vascular homeostasis and preventing atherosclerosis. Patients with systemic lupus erythematosus (SLE) have an increased risk of developing endothelial dysfunction and premature cardiovascular disease. Neutrophil extracellular trap (NET) formation is increased in SLE and has been proposed to contribute to endothelial damage, but the mechanism remains unclear. Objective To determine the mechanism by which enhanced NET formation by low-density granulocytes (LDGs) in SLE contributes to endothelial damage and disrupts the endothelium. Results The putative role of NET-externalised matrix metalloproteinases (MMPs) in altering the functional integrity of the endothelium was examined. MMP-9 externalised by lupus LDGs during NET formation specifically impaired murine aortic endothelium-dependent vasorelaxation and induced endothelial cell apoptosis. Endothelial dysfunction correlated with the activation of endothelial MMP-2 by MMP-9 present in NETs, while inhibition of MMP-2 activation restored endothelium-dependent function and decreased NET-induced vascular cytotoxicity. Moreover, immunogenic complexes composed of MMP-9 and anti-MMP-9 were identified in SLE sera. These complexes, as well as anti-MMP-9 autoantibodies, induced NETosis and enhanced MMP-9 activity. Conclusions These observations implicate activation of endothelial MMP-2 by MMP-9 contained in NETs as an important player in endothelial dysfunction, and MMP-9 as a novel self-antigen in SLE. These results further support that aberrant NET formation plays pathogenic roles in SLE.
Circulation Research | 2014
Jason S. Knight; Wei Luo; Alexander A. O’Dell; Srilakshmi Yalavarthi; Wenpu Zhao; Venkataraman Subramanian; Chiao Guo; Robert C. Grenn; Paul R. Thompson; Daniel T. Eitzman; Mariana J. Kaplan
Rationale: Neutrophil extracellular trap (NET) formation promotes vascular damage, thrombosis, and activation of interferon-&agr;–producing plasmacytoid dendritic cells in diseased arteries. Peptidylarginine deiminase inhibition is a strategy that can decrease in vivo NET formation. Objective: To test whether peptidylarginine deiminase inhibition, a novel approach to targeting arterial disease, can reduce vascular damage and inhibit innate immune responses in murine models of atherosclerosis. Methods and Results: Apolipoprotein-E (Apoe)−/− mice demonstrated enhanced NET formation, developed autoantibodies to NETs, and expressed high levels of interferon-&agr; in diseased arteries. Apoe−/− mice were treated for 11 weeks with daily injections of Cl-amidine, a peptidylarginine deiminase inhibitor. Peptidylarginine deiminase inhibition blocked NET formation, reduced atherosclerotic lesion area, and delayed time to carotid artery thrombosis in a photochemical injury model. Decreases in atherosclerosis burden were accompanied by reduced recruitment of netting neutrophils and macrophages to arteries, as well as by reduced arterial interferon-&agr; expression. Conclusions: Pharmacological interventions that block NET formation can reduce atherosclerosis burden and arterial thrombosis in murine systems. These results support a role for aberrant NET formation in the pathogenesis of atherosclerosis through modulation of innate immune responses.
Annals of the Rheumatic Diseases | 2015
Jason S. Knight; Venkataraman Subramanian; Alexander A O'Dell; Srilakshmi Yalavarthi; Wenpu Zhao; Carolyne K. Smith; Jeffrey B. Hodgin; Paul R. Thompson; Mariana J. Kaplan
Objectives An imbalance between neutrophil extracellular trap (NET) formation and degradation has been described in systemic lupus erythematosus (SLE), potentially contributing to autoantigen externalisation, type I interferon synthesis and endothelial damage. We have demonstrated that peptidylarginine deiminase (PAD) inhibition reduces NET formation and protects against lupus-related vascular damage in the New Zealand Mixed model of lupus. However, another strategy for inhibiting NETs—knockout of NOX2—accelerates lupus in a different murine model, MRL/lpr. Here, we test the effects of PAD inhibition on MRL/lpr mice in order to clarify whether some NET inhibitory pathways may be consistently therapeutic across models of SLE. Methods NET formation and autoantibodies to NETs were characterised in lupus-prone MRL/lpr mice. MRL/lpr mice were also treated with two different PAD inhibitors, Cl-amidine and the newly described BB-Cl-amidine. NET formation, endothelial function, interferon signature, nephritis and skin disease were examined in treated mice. Results Neutrophils from MRL/lpr mice demonstrate accelerated NET formation compared with controls. MRL/lpr mice also form autoantibodies to NETs and have evidence of endothelial dysfunction. PAD inhibition markedly improves endothelial function, while downregulating the expression of type I interferon-regulated genes. PAD inhibition also reduces proteinuria and immune complex deposition in the kidneys, while protecting against skin disease. Conclusions PAD inhibition reduces NET formation, while protecting against lupus-related damage to the vasculature, kidneys and skin in various lupus models. The strategy by which NETs are inhibited will have to be carefully considered if human studies are to be undertaken.
Arthritis & Rheumatism | 2012
Seth G. Thacker; Wenpu Zhao; Carolyne K. Smith; Wei Luo; Hui Wang; Anuradha Vivekanandan-Giri; Alisa E. Koch; Subramaniam Pennathur; Anne Davidson; Daniel T. Eitzman; Mariana J. Kaplan
OBJECTIVE Patients with systemic lupus erythematosus (SLE) have a notable increase in atherothrombotic cardiovascular disease (CVD) which is not explained by the Framingham risk equation. In vitro studies indicate that type I interferons (IFNs) may play prominent roles in increased CV risk in SLE. However, the in vivo relevance of these findings, with regard to the development of CVD, has not been characterized. This study was undertaken to examine the role of type I IFNs in endothelial dysfunction, aberrant vascular repair, and atherothrombosis in murine models of lupus and atherosclerosis. METHODS Lupus-prone New Zealand mixed 2328 (NZM) mice and atherosclerosis-prone apolipoprotein E- knockout (apoE(-/-) ) mice were compared to mice lacking type I IFN receptor (INZM and apoE(-/-) IFNAR(-/-) mice, respectively) with regard to endothelial vasodilatory function, endothelial progenitor cell (EPC) function, in vivo neoangiogenesis, plaque development, and occlusive thrombosis. Similar experiments were performed using NZM and apoE(-/-) mice exposed to an IFNα-containing or empty adenovirus. RESULTS Loss of type I IFN receptor signaling improved endothelium-dependent vasorelaxation, lipoprotein parameters, EPC numbers and function, and neoangiogenesis in lupus-prone mice, independent of disease activity or sex. Further, acute exposure to IFNα impaired endothelial vasorelaxation and EPC function in lupus-prone and non-lupus-prone mice. Decreased atherosclerosis severity and arterial inflammatory infiltrates and increased neoangiogenesis were observed in apoE(-/-) IFNAR(-/-) mice, compared to apoE(-/-) mice, while NZM and apoE(-/-) mice exposed to IFNα developed accelerated thrombosis and platelet activation. CONCLUSION These results support the hypothesis that type I IFNs play key roles in the development of premature CVD in SLE and, potentially, in the general population, through pleiotropic deleterious effects on the vasculature.
PLOS ONE | 2012
Emily C. Somers; Wenpu Zhao; Emily E. Lewis; Lu Wang; Jeffrey J. Wing; Baskaran Sundaram; Ella A. Kazerooni; W. Joseph McCune; Mariana J. Kaplan
Background Systemic lupus erythematosus (SLE) patients have a striking increase in cardiovascular (CV) comorbidity not fully explained by the Framingham risk score. Recent evidence from in vitro studies suggests that type I interferons (IFN) could promote premature CV disease (CVD) in SLE. We assessed the association of type I IFN signatures with functional and anatomical evidence of vascular damage, and with biomarkers of CV risk in a cohort of lupus patients without overt CVD. Methodology/Principal Findings Serum type I IFN activity (induction of five IFN-inducible genes; IFIGs) from 95 SLE patient and 38 controls was quantified by real-time PCR. Flow mediated dilatation (FMD) of the brachial artery and carotid intima media thickness (CIMT) were quantified by ultrasound, and coronary calcification by computed tomography. Serum vascular biomarkers were measured by ELISA. We evaluated the effect of type I IFNs on FMD, CIMT and coronary calcification by first applying principal components analysis to combine data from five IFIGs into summary components that could be simultaneously modeled. Three components were derived explaining 97.1% of the total IFIG variation. Multivariable linear regression was utilized to investigate the association between the three components and other covariates, with the outcomes of FMD and CIMT; zero-inflated Poisson regression was used for modeling of coronary calcification. After controlling for traditional CV risk factors, enhanced serum IFN activity was significantly associated with decreased endothelial function in SLE patients and controls (p<0.05 for component 3), increased CIMT among SLE patients (p<0.01 for components 1 and 2), and severity of coronary calcification among SLE patients (p<0.001 for component 3). Conclusions Type I IFNs are independently associated with atherosclerosis development in lupus patients without history of overt CVD and after controlling for Framingham risk factors. This study further supports the hypothesis that type I IFNs promote premature vascular damage in SLE.
Journal of Autoimmunity | 2015
Patrick Coit; Srilakshmi Yalavarthi; Mikhail Ognenovski; Wenpu Zhao; Sarfaraz Hasni; Jonathan D. Wren; Mariana J. Kaplan; Amr H. Sawalha
Recent evidence suggests that neutrophils play an important role in the pathogenesis of lupus. The goal of this study was to characterize the epigenetic architecture, by studying the DNA methylome, of neutrophils and low density granulocytes (LDGs) in lupus patients. We studied 15 lupus patients and 15 healthy age, sex, and ethnicity matched controls. Genome-wide DNA methylation was assessed using the Illumina HumanMethylation 450 BeadChip array, which includes over 485,000 methylation sites across the entire genome. Bisulfite DNA sequencing was used to validate the array results. Statistical and bioinformatic analysis was performed to identify and characterize differentially methylated loci and genes. We identified 293 differentially methylated CG sites in neutrophils between lupus patients and controls. The majority (68%) of differentially methylated CG sites were hypomethylated in lupus neutrophils compared to controls, suggesting overall hypomethylation. We found a robust and consistent demethylation of interferon signature genes in lupus neutrophils, and similar demethylation in the same genes in autologous LDGs. Indeed, the DNA methylome in lupus neutrophils and LDGs was almost identical, suggesting similar chromatin architecture in the two granulocyte subsets. A notable exception was the hypomethylation of a CG site in the promoter region of the cytoskeleton-regulating gene RAC1 in LDGs. Our findings demonstrate a pattern of robust demethylation of interferon signature genes in lupus patients supporting a pathogenic role for neutrophils in lupus. We suggest a model whereby DNA from lupus neutrophils and LDGs externalized by NETosis enhance type-I IFN production via TLR-9 stimulation by hypomethylated DNA.
Arthritis & Rheumatism | 2014
J. Michelle Kahlenberg; Srilakshmi Yalavarthi; Wenpu Zhao; Jeffrey B. Hodgin; Tamra J. Reed; Noriko M. Tsuji; Mariana J. Kaplan
Systemic lupus erythematosus (SLE) is a systemic autoimmune syndrome associated with organ damage and an elevated risk of cardiovascular disease resulting from activation of both innate and adaptive immune pathways. Recently, increased activation of the inflammasome machinery in SLE has been described. Using the mouse model of pristane‐induced lupus, we undertook this study to explore whether caspase 1, the central enzyme of the inflammasome, plays a role in the development of SLE and its associated vascular dysfunction.