Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Srinivas D. Sithu is active.

Publication


Featured researches published by Srinivas D. Sithu.


Journal of Biological Chemistry | 2006

Tumor Necrosis Factor-α-converting Enzyme (TACE/ADAM-17) Mediates the Ectodomain Cleavage of Intercellular Adhesion Molecule-1 (ICAM-1)

Nina L. Tsakadze; Srinivas D. Sithu; Utpal Sen; William R. English; Gillian Murphy; Stanley E. D'Souza

Ectodomain shedding has emerged as an important regulatory step in the function of transmembrane proteins. Intercellular adhesion molecule-1 (ICAM-1), an adhesion receptor that mediates inflammatory and immune responses, undergoes shedding in the presence of inflammatory mediators and phorbol 12-myristate 13-acetate (PMA). The shedding of ICAM-1 in ICAM-1-transfected 293 cells upon PMA stimulation and in endothelial cells upon tumor necrosis factor-α stimulation was blocked by metalloproteinase inhibitors, whereas serine protease inhibitors were ineffective. p-Aminophenylmercuric acetate, a mercuric compound that is known to activate matrix metalloproteinases, up-regulated ICAM-1 shedding. TIMP-3 (but not TIMP-1 or -2) effectively blocked cleavage. This profile suggests the involvement of the ADAM family of proteases in the cleavage of ICAM-1. The introduction of enzymatically active tumor necrosis factor-α-converting enzyme (TACE) into ICAM-1-expressing cells up-regulated cleavage. Small interfering RNA directed against TACE blocked ICAM-1 cleavage. ICAM-1 transfected into TACE–– fibroblasts did not show increased shedding over constitutive levels in the presence of PMA, whereas cleavage did occur in ICAM-1-transfected TACE++ cells. These results indicate that ICAM-1 shedding is mediated by TACE. Blocking the shedding of ICAM-1 altered the cell adhesive function, as ICAM-1-mediated cell adhesion was up-regulated in the presence of TACE small interfering RNA and TIMP-3, but not TIMP-1. However, cleavage was found to occur at multiple sites within the stalk domain of ICAM-1, and numerous point mutations within the region did not affect cleavage, indicating that TACE-mediated cleavage of ICAM-1 may not be sequence-specific.


Toxicology and Applied Pharmacology | 2009

Arsenic exacerbates atherosclerotic lesion formation and inflammation in ApoE-/- mice

Sanjay Srivastava; Elena Vladykovskaya; Petra Haberzettl; Srinivas D. Sithu; Stanley E. D'Souza; J. Christopher States

Exposure to arsenic-contaminated water has been shown to be associated with cardiovascular disease, especially atherosclerosis. We examined the effect of arsenic exposure on atherosclerotic lesion formation, lesion composition and nature in ApoE-/- mice. Early post-natal exposure (3-week-old mice exposed to 49 ppm arsenic as NaAsO(2) in drinking water for 7 weeks) increased the atherosclerotic lesion formation by 3- to 5-fold in the aortic valve and the aortic arch, without affecting plasma cholesterol. Exposure to arsenic for 13 weeks (3-week-old mice exposed to 1, 4.9 and 49 ppm arsenic as NaAsO(2) in drinking water) increased the lesion formation and macrophage accumulation in a dose-dependent manner. Temporal studies showed that continuous arsenic exposure significantly exacerbated the lesion formation throughout the aortic tree at 16 and 36 weeks of age. Withdrawal of arsenic for 12 weeks after an initial exposure for 21 weeks (to 3-week-old mice) significantly decreased lesion formation as compared with mice continuously exposed to arsenic. Similarly, adult exposure to 49 ppm arsenic for 24 weeks, starting at 12 weeks of age increased lesion formation by 2- to 3.6-fold in the aortic valve, the aortic arch and the abdominal aorta. Lesions of arsenic-exposed mice displayed a 1.8-fold increase in macrophage accumulation whereas smooth muscle cell and T-lymphocyte contents were not changed. Expression of pro-inflammatory chemokine MCP-1 and cytokine IL-6 and markers of oxidative stress, protein-HNE and protein-MDA adducts were markedly increased in lesions of arsenic-exposed mice. Plasma concentrations of MCP-1, IL-6 and MDA were also significantly elevated in arsenic-exposed mice. These data suggest that arsenic exposure increases oxidative stress, inflammation and atherosclerotic lesion formation.


Journal of Biological Chemistry | 2012

Lipid Peroxidation Product 4-Hydroxy-trans-2-nonenal Causes Endothelial Activation by Inducing Endoplasmic Reticulum Stress

Elena Vladykovskaya; Srinivas D. Sithu; Petra Haberzettl; Nalinie S. Wickramasinghe; Michael L. Merchant; Bradford G. Hill; James McCracken; Abhinav Agarwal; Susan M. Dougherty; Sharon A. Gordon; Dale A. Schuschke; Oleg A. Barski; Timothy E. O'Toole; Stanley E. D'Souza; Aruni Bhatnagar; Sanjay K. Srivastava

Background: Oxidized lipids cause endothelial activation. Results: Endothelial activation by the lipid peroxidation product, 4-hydroxy-trans-2-nonenal, was associated with ER stress and was prevented by chaperones of protein folding. Conclusion: ER stress regulates endothelial activation by oxidized lipids. Significance: Vascular inflammation caused by oxidized lipids could be attenuated by decreasing ER stress. Lipid peroxidation products, such as 4-hydroxy-trans-2-nonenal (HNE), cause endothelial activation, and they increase the adhesion of the endothelium to circulating leukocytes. Nevertheless, the mechanisms underlying these effects remain unclear. We observed that in HNE-treated human umbilical vein endothelial cells, some of the protein-HNE adducts colocalize with the endoplasmic reticulum (ER) and that HNE forms covalent adducts with several ER chaperones that assist in protein folding. We also found that at concentrations that did not induce apoptosis or necrosis, HNE activated the unfolded protein response, leading to an increase in XBP-1 splicing, phosphorylation of protein kinase-like ER kinase and eukaryotic translation initiation factor 2α, and the induction of ATF3 and ATF4. This increase in eukaryotic translation initiation factor 2α phosphorylation was prevented by transfection with protein kinase-like ER kinase siRNA. Treatment with HNE increased the expression of the ER chaperones, GRP78 and HERP. Exposure to HNE led to a depletion of reduced glutathione and an increase in the production of reactive oxygen species (ROS); however, glutathione depletion and ROS production by tert-butyl-hydroperoxide did not trigger the unfolded protein response. Pretreatment with a chemical chaperone, phenylbutyric acid, or adenoviral transfection with ATF6 attenuated HNE-induced monocyte adhesion and IL-8 induction. Moreover, phenylbutyric acid and taurine-conjugated ursodeoxycholic acid attenuated HNE-induced leukocyte rolling and their firm adhesion to the endothelium in rat cremaster muscle. These data suggest that endothelial activation by HNE is mediated in part by ER stress, induced by mechanisms independent of ROS production or glutathione depletion. The induction of ER stress may be a significant cause of vascular inflammation induced by products of oxidized lipids.


Journal of Biological Chemistry | 2007

Membrane-type 1-matrix metalloproteinase regulates intracellular adhesion molecule-1 (ICAM-1)-mediated monocyte transmigration.

Srinivas D. Sithu; William R. English; Paul Olson; Davia Krubasik; Andrew H. Baker; Gillian Murphy; Stanley E. D'Souza

We examined the mechanism regulating intercellular cell adhesion molecule-1 (ICAM-1)-dependent monocyte transendothelial migration. Monocyte migration through endothelial cells expressing ICAM-1 alone was comparable to that of tumor necrosis factor-α-treated cells. Transmigration was reduced in ICAM-1 lacking the cytoplasmic tail and in tyrosine to alanine substitutions at Tyr-485 and Tyr-474. Tissue inhibitors of matrix metalloproteinases (TIMPs) -2 and -3 blocked transmigration, whereas TIMP-1 was ineffective. This profile suggested a role for membrane-type matrix metalloproteinases (MT-MMPs) in transmigration. Inhibitory antibodies and small interference RNA directed against MT1-MMP blocked transmigration, whereas overexpression of MT1-MMP in endothelial cells or monocytes promoted transmigration. MT1-MMP mediated the ectodomain cleavage of ICAM-1 that was blocked by TIMP-2 and -3. Overexpression of MT1-MMP rescued function in ICAM-1Y485A, and to a lesser extent in the cytoplasmic tail-deleted ICAM-1. In a binding assay, wild-type ICAM-1 bound to purified MT1-MMP while ICAM-1 mutants bound poorly. MT1-MMP co-localized with ICAM-1 at distinct structures in endothelial cells. MT1-MMP localization with cells expressing ICAM-1 mutations was reduced and diffused. These results indicate that the cytoplasmic tail of ICAM-1 regulates leukocyte transmigration through MT1-MMP interaction.


Atherosclerosis | 2011

Oral exposure to acrolein exacerbates atherosclerosis in apoE-null mice

Sanjay Srivastava; Srinivas D. Sithu; Elena Vladykovskaya; Petra Haberzettl; David Hoetker; Maqsood A. Siddiqui; Daniel J. Conklin; Stanley E. D'Souza; Aruni Bhatnagar

BACKGROUND Acrolein is a dietary aldehyde that is present in high concentrations in alcoholic beverages and foods including cheese, donuts and coffee. It is also abundant in tobacco smoke, automobile exhaust and industrial waste and is generated in vivo during inflammation and oxidative stress. OBJECTIVES The goal of this study was to examine the effects of dietary acrolein on atherosclerosis. METHODS Eight-week-old male apoE-null mice were gavage-fed acrolein (2.5mg/kg/day) for 8 weeks. Atherosclerotic lesion formation and composition and plasma lipids and platelet factor 4 (PF4) levels were measured. Effects of acrolein and PF4 on endothelial cell function was measured in vitro. RESULTS Acrolein feeding increased the concentration of cholesterol in the plasma. NMR analysis of the lipoproteins showed that acrolein feeding increased the abundance of small and medium VLDL particles. Acrolein feeding also increased atherosclerotic lesion formation in the aortic valve and the aortic arch. Immunohistochemical analysis showed increased macrophage accumulation in the lesions of acrolein-fed mice. Plasma PF4 levels and accumulation of PF4 in atherosclerotic lesions was increased in the acrolein-fed mice. Incubation of endothelial cells with the plasma of acrolein-fed mice augmented transmigration of monocytic cells, which was abolished by anti-PF4 antibody treatment. CONCLUSIONS Dietary exposure to acrolein exacerbates atherosclerosis in apoE-null mice. Consumption of foods and beverages rich in unsaturated aldehydes such as acrolein may be a contributing factor to the progression of atherosclerotic lesions.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2013

Dietary Carnosine Prevents Early Atherosclerotic Lesion Formation in Apolipoprotein E–Null Mice

Oleg A. Barski; Zhengzhi Xie; Shahid P. Baba; Srinivas D. Sithu; Abhinav Agarwal; Jian Cai; Aruni Bhatnagar; Sanjay Srivastava

Objective—Atherosclerotic lesions are associated with the accumulation of reactive aldehydes derived from oxidized lipids. Although inhibition of aldehyde metabolism has been shown to exacerbate atherosclerosis and enhance the accumulation of aldehyde-modified proteins in atherosclerotic plaques, no therapeutic interventions have been devised to prevent aldehyde accumulation in atherosclerotic lesions. Approach and Results—We examined the efficacy of carnosine, a naturally occurring &bgr;-alanyl-histidine dipeptide, in preventing aldehyde toxicity and atherogenesis in apolipoprotein E–null mice. In vitro, carnosine reacted rapidly with lipid peroxidation-derived unsaturated aldehydes. Gas chromatography mass-spectrometry analysis showed that carnosine inhibits the formation of free aldehydes 4-hydroxynonenal and malonaldialdehyde in Cu2+-oxidized low-density lipoprotein. Preloading bone marrow–derived macrophages with cell-permeable carnosine analogs reduced 4-hydroxynonenal–induced apoptosis. Oral supplementation with octyl-D-carnosine decreased atherosclerotic lesion formation in aortic valves of apolipoprotein E–null mice and attenuated the accumulation of protein-acrolein, protein-4-hydroxyhexenal, and protein-4-hydroxynonenal adducts in atherosclerotic lesions, whereas urinary excretion of aldehydes as carnosine conjugates was increased. Conclusions—The results of this study suggest that carnosine inhibits atherogenesis by facilitating aldehyde removal from atherosclerotic lesions. Endogenous levels of carnosine may be important determinants of atherosclerotic lesion formation, and treatment with carnosine or related peptides could be a useful therapy for the prevention or the treatment of atherosclerosis.


Toxicology and Applied Pharmacology | 2010

Exposure to acrolein by inhalation causes platelet activation.

Srinivas D. Sithu; Sanjay Srivastava; Maqsood A. Siddiqui; Elena Vladykovskaya; Daniel W. Riggs; Daniel J. Conklin; Petra Haberzettl; Timothy E. O'Toole; Aruni Bhatnagar; Stanley E. D'Souza

Acrolein is a common air pollutant that is present in high concentrations in wood, cotton, and tobacco smoke, automobile exhaust and industrial waste and emissions. Exposure to acrolein containing environmental pollutants such as tobacco smoke and automobile exhaust has been linked to the activation of the coagulation and hemostasis pathways and thereby to the predisposition of thrombotic events in human. To examine the effects of acrolein on platelets, adult male C57Bl/6 mice were subjected acute (5ppm for 6h) or sub-chronic (1ppm, 6h/day for 4days) acrolein inhalation exposures. The acute exposure to acrolein did not cause pulmonary inflammation and oxidative stress, dyslipidemia or induce liver damage or muscle injury. Platelet GSH levels in acrolein-exposed mice were comparable to controls, but acrolein-exposure increased the abundance of protein-acrolein adducts in platelets. Platelets isolated from mice, exposed to both acute and sub-chronic acrolein levels, showed increased ADP-induced platelet aggregation. Exposure to acrolein also led to an increase in the indices of platelet activation such as the formation of platelet-leukocyte aggregates in the blood, plasma PF4 levels, and increased platelet-fibrinogen binding. The bleeding time was decreased in acrolein exposed mice. Plasma levels of PF4 were also increased in mice exposed to environmental tobacco smoke. Similar to inhalation exposure, acrolein feeding to mice also increased platelet activation and established a pro-thrombotic state in mice. Together, our data suggest that acrolein is an important contributing factor to the pro-thrombotic risk in human exposure to pollutants such as tobacco smoke or automobile exhaust, or through dietary consumption.


Journal of Cellular Physiology | 2008

Cytochrome P450 (CYP) 2J2 gene transfection attenuates MMP-9 via inhibition of NF-κβ in hyperhomocysteinemia

Karni S. Moshal; Darryl C. Zeldin; Srinivas D. Sithu; Utpal Sen; Neetu Tyagi; Munish Kumar; William M. Hughes; Naira Metreveli; Dorothea Rosenberger; Mahavir Singh; Thomas P. Vacek; Walter E. Rodriguez; Adeagbo Ayotunde; Suresh C. Tyagi

Hyperhomocysteinemia (HHcy) is associated with atherosclerotic events involving the modulation of arachidonic acid (AA) metabolism and the activation of matrix metalloproteinase‐9 (MMP‐9). Cytochrome P450 (CYP) epoxygenase‐2J2 (CYP2J2) is abundant in the heart endothelium, and its AA metabolites epoxyeicosatrienoic acids (EETs) mitigates inflammation through NF‐κβ. However, the underlying molecular mechanisms for MMP‐9 regulation by CYP2J2 in HHcy remain obscure. We sought to determine the molecular mechanisms by which P450 epoxygenase gene transfection or EETs supplementation attenuate homocysteine (Hcy)‐induced MMP‐9 activation. CYP2J2 was over‐expressed in mouse aortic endothelial cells (MAECs) by transfection with the pcDNA3.1/CYP2J2 vector. The effects of P450 epoxygenase transfection or exogenous supplementation of EETs on NF‐κβ‐mediated MMP‐9 regulation were evaluated using Western blot, in‐gel gelatin zymography, electromobility shift assay, immunocytochemistry. The result suggested that Hcy downregulated CYP2J2 protein expression and dephosphorylated PI3K‐dependent AKT signal. Hcy induced the nuclear translocation of NF‐κβ via downregulation of IKβα (endogenous cytoplasmic inhibitor of NF‐κβ). Hcy induced MMP‐9 activation by increasing NF‐κβ–DNA binding. Moreover, P450 epoxygenase transfection or exogenous addition of 8,9‐EET phosphorylated the AKT and attenuated Hcy‐induced MMP‐9 activation. This occurred, in part, by the inhibition of NF‐κβ nuclear translocation, NF‐κβ–DNA binding and activation of IKβα. The study unequivocally suggested the pivotal role of EETs in the modulation of Hcy/MMP‐9 signal. J. Cell. Physiol. 215: 771–781, 2008.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2013

Dietary Carnosine Prevents Early Atherosclerotic Lesion Formation in ApoE-null Mice

Oleg A. Barski; Zhengzhi Xie; Shahid P. Baba; Srinivas D. Sithu; Abhinav Agarwal; Jian Cai; Aruni Bhatnagar; Sanjay K. Srivastava

Objective—Atherosclerotic lesions are associated with the accumulation of reactive aldehydes derived from oxidized lipids. Although inhibition of aldehyde metabolism has been shown to exacerbate atherosclerosis and enhance the accumulation of aldehyde-modified proteins in atherosclerotic plaques, no therapeutic interventions have been devised to prevent aldehyde accumulation in atherosclerotic lesions. Approach and Results—We examined the efficacy of carnosine, a naturally occurring &bgr;-alanyl-histidine dipeptide, in preventing aldehyde toxicity and atherogenesis in apolipoprotein E–null mice. In vitro, carnosine reacted rapidly with lipid peroxidation-derived unsaturated aldehydes. Gas chromatography mass-spectrometry analysis showed that carnosine inhibits the formation of free aldehydes 4-hydroxynonenal and malonaldialdehyde in Cu2+-oxidized low-density lipoprotein. Preloading bone marrow–derived macrophages with cell-permeable carnosine analogs reduced 4-hydroxynonenal–induced apoptosis. Oral supplementation with octyl-D-carnosine decreased atherosclerotic lesion formation in aortic valves of apolipoprotein E–null mice and attenuated the accumulation of protein-acrolein, protein-4-hydroxyhexenal, and protein-4-hydroxynonenal adducts in atherosclerotic lesions, whereas urinary excretion of aldehydes as carnosine conjugates was increased. Conclusions—The results of this study suggest that carnosine inhibits atherogenesis by facilitating aldehyde removal from atherosclerotic lesions. Endogenous levels of carnosine may be important determinants of atherosclerotic lesion formation, and treatment with carnosine or related peptides could be a useful therapy for the prevention or the treatment of atherosclerosis.


Nature Communications | 2015

The oncogenic microRNA miR-21 promotes regulated necrosis in mice

Xiaodong Ma; Daniel J. Conklin; Fenge Li; Zhongping Dai; Xiang Hua; Yan Li; Zijun Y. Xu-Monette; Ken H. Young; Wei Xiong; Marcin Wysoczynski; Srinivas D. Sithu; Sanjay Srivastava; Aruni Bhatnagar; Yong Li

MicroRNAs (miRNAs) regulate apoptosis, yet their role in regulated necrosis remains unknown. miR-21 is overexpressed in nearly all human cancer types and its role as an oncogene is suggested to largely depend on its anti-apoptotic action. Here we show that miR-21 is overexpressed in a murine model of acute pancreatitis, a pathologic condition involving RIP3-dependent regulated necrosis (necroptosis). Therefore, we investigate the role of miR-21 in acute pancreatitis injury and necroptosis. miR-21 deficiency protects against caerulein- or L-arginine-induced acute pancreatitis in mice. miR-21 inhibition using locked-nucleic-acid-modified oligonucleotide effectively reduces pancreatitis severity. miR-21 deletion is also protective in tumor necrosis factor-induced systemic inflammatory response syndrome. These data suggest that miRNAs are critical participants in necroptosis, and miR-21 enhances cellular necrosis by negatively regulating tumor suppressor genes associated with the death-receptor-mediated intrinsic apoptosis pathway and could be a therapeutic target for preventing pathologic necrosis.

Collaboration


Dive into the Srinivas D. Sithu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sanjay K. Srivastava

Texas Tech University Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Daniel J. Conklin

American Heart Association

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge