Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Daniel J. Conklin is active.

Publication


Featured researches published by Daniel J. Conklin.


The EMBO Journal | 2011

miR‐301a as an NF‐κB activator in pancreatic cancer cells

Zhongxin Lu; Yan Li; Apana Takwi; Benhui Li; Jingwen Zhang; Daniel J. Conklin; Ken H. Young; Robert C.G. Martin; Yong Li

NF‐κB is constitutively activated in most human pancreatic adenocarcinoma, which is a deadly malignancy with a 5‐year survival rate of about 5%. In this work, we investigate whether microRNAs (miRNAs) contribute to NF‐κB activation in pancreatic cancer. We demonstrate that miR‐301a down‐regulates NF‐κB‐repressing factor (Nkrf) and elevates NF‐κB activation. As NF‐κB promotes the transcription of miR‐301a, our results support a positive feedback loop as a mechanism for persistent NF‐κB activation, in which miR‐301a represses Nkrf to elevate NF‐κB activity, which in turn promotes miR‐301a transcription. Nkrf was found down‐regulated and miR‐301a up‐regulated in human pancreatic adenocarcinoma tissues. Moreover, miR‐301a inhibition or Nkrf up‐regulation in pancreatic cancer cells led to reduced NF‐κB target gene expression and attenuated xenograft tumour growth, indicating that miR‐301a overexpression contributes to NF‐κB activation. Revealing this novel mechanism of NF‐κB activation by an miRNA offers new avenues for therapeutic interventions against pancreatic cancer.


Circulation | 2008

Cardiac Myocyte–Specific Expression of Inducible Nitric Oxide Synthase Protects Against Ischemia/Reperfusion Injury by Preventing Mitochondrial Permeability Transition

Matthew West; Gregg Rokosh; Detlef Obal; Murugesan Velayutham; Yu-Ting Xuan; Bradford G. Hill; Rachel Keith; J. Schrader; Yiru Guo; Daniel J. Conklin; Sumanth D. Prabhu; Jay L. Zweier; Roberto Bolli; Aruni Bhatnagar

Background— Inducible nitric oxide synthase (iNOS) is an obligatory mediator of the late phase of ischemic preconditioning, but the mechanisms of its cardioprotective actions are unknown. In addition, it remains unclear whether sustained elevation of iNOS in myocytes provides chronic protection against ischemia/reperfusion injury. Methods and Results— Constitutive overexpression of iNOS in transgenic mice (α-myosin heavy chain promoter) did not induce contractile dysfunction and did not affect mitochondrial respiration or biogenesis, but it profoundly decreased infarct size in mice subjected to 30 minutes of coronary occlusion and 24 hours of reperfusion. In comparison with wild-type hearts, isolated iNOS-transgenic hearts subjected to ischemia for 30 minutes followed by 40 minutes of reperfusion displayed better contractile recovery, smaller infarct size, and less mitochondrial entrapment of 2-deoxy-[3H]-glucose. Reperfusion-induced loss of NAD+ and mitochondrial release of cytochrome c were attenuated in iNOS-transgenic hearts, indicating reduced mitochondrial permeability transition. The NO donor NOC-22 prevented permeability transition in isolated mitochondria, and mitochondrial permeability transition–induced NAD+ loss was decreased in wild-type but not iNOS-null mice treated with the NO donor diethylene triamine/NO 24 hours before ischemia and reperfusion ex vivo. iNOS-mediated cardioprotection was not abolished by atractyloside. Reperfusion-induced production of oxygen-derived free radicals (measured by electron paramagnetic resonance spectroscopy) was attenuated in iNOS-transgenic hearts and was increased in wild-type hearts treated with the mitochondrial permeability transition inhibitor cyclosporin A. Conclusions— Cardiomyocyte-restricted expression of iNOS provides sustained cardioprotection. This cardioprotection is associated with a decrease in reperfusion-induced oxygen radicals and inhibition of mitochondrial swelling and permeability transition.


Journal of Nutritional Biochemistry | 2013

Polychlorinated biphenyl 153 is a diet-dependent obesogen that worsens nonalcoholic fatty liver disease in male C57BL6/J mice ☆ ☆☆

Banrida Wahlang; K. Cameron Falkner; Bonnie Gregory; Douglas Ansert; David Young; Daniel J. Conklin; Aruni Bhatnagar; Craig J. McClain; Matt Cave

BACKGROUND Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that are detectable in the serum of all American adults. Amongst PCB congeners, PCB 153 has the highest serum level. PCBs have been dose-dependently associated with obesity, metabolic syndrome and nonalcoholic fatty liver disease (NAFLD) in epidemiological studies. OBJECTIVE The purpose of this study is to determine mechanisms by which PCB 153 worsens diet-induced obesity and NAFLD in male mice fed a high-fat diet (HFD). METHODS Male C57BL6/J mice were fed either control or 42% milk fat diet for 12 weeks with or without PCB 153 coexposure (50 mg/kg ip ×4). Glucose tolerance test was performed, and plasma and tissues were obtained at necropsy for measurements of adipocytokine levels, histology and gene expression. RESULTS In control diet-fed mice, addition of PCB 153 had minimal effects on any of the measured parameters. However, PCB 153 treatment in high-fat-fed mice was associated with increased visceral adiposity, hepatic steatosis and plasma adipokines including adiponectin, leptin, resistin and plasminogen activator inhibitor-1 levels. Likewise, coexposure reduced expression of hepatic genes implicated in β-oxidation while increasing the expression of genes associated with lipid biosynthesis. Regardless of diet, PCB 153 had no effect on insulin resistance or tumor necrosis factor alpha levels. CONCLUSION PCB 153 is an obesogen that exacerbates hepatic steatosis, alters adipocytokines and disrupts normal hepatic lipid metabolism when administered with HFD but not control diet. Because all US adults have been exposed to PCB 153, this particular nutrient-toxicant interaction potentially impacts human obesity/NAFLD.


Circulation Research | 2010

Episodic Exposure to Fine Particulate Air Pollution Decreases Circulating Levels of Endothelial Progenitor Cells

Timothy E. O'Toole; Jason Hellmann; Laura Wheat; Petra Haberzettl; Jongmin Lee; Daniel J. Conklin; Aruni Bhatnagar; C. Arden Pope

Rationale: Acute and chronic exposures to airborne particulate matter (PM) have been linked in epidemiological studies to a wide spectrum of cardiovascular disorders that are characterized by a dysfunctional endothelium. The pathophysiological mechanisms underlying these associations are unclear. Objective: To examine whether exposure to fine PM with an aerodynamic diameter of <2.5 &mgr;m (PM2.5) affects the circulating levels of endothelial progenitor cell (EPC) populations, systemic inflammation and coagulation. Methods and Results: Phenotypically distinct EPC populations were quantified by flow cytometry in young (18 to 25 years) adult humans exposed to episodic increases in PM2.5 along the Wasatch Mountain Front in Utah. In addition, Sca-1+/Flk-1+ cells were measured in the peripheral blood of mice exposed to concentrated particles from ambient air in Louisville, Ky. In both studies, PM exposure was negatively correlated with circulating EPC levels. In humans, statistically significant associations between PM2.5 exposure and the plasma levels of platelet–monocyte aggregates, high-density lipoprotein, and nonalbumin protein were also observed. Episodic increases in PM2.5 did not change plasma levels of C-reactive protein, interleukin-1&bgr;, interleukin-6, fibrinogen, or serum amyloid A. Conclusions: Episodic exposure to PM2.5 induces reversible vascular injury, reflected in part by depletion of circulating EPC levels, and increases in platelet activation and the plasma level of high-density lipoprotein. These changes were also accompanied by an increase in nonalbumin protein and may be related to mechanisms by which exposure to particulate air pollution increases the risk of cardiovascular disease and adverse cardiovascular events.


Toxicology and Applied Pharmacology | 2010

Inhaled Diesel Emissions Alter Atherosclerotic Plaque Composition in ApoE−/− Mice

Matthew J. Campen; Amie K. Lund; Travis L. Knuckles; Daniel J. Conklin; Barbara Bishop; David Young; Steven K. Seilkop; JeanClare Seagrave; Matthew D. Reed; Jacob D. McDonald

Recent epidemiological studies suggest that traffic-related air pollution may have detrimental effects on cardiovascular health. Previous studies reveal that gasoline emissions can induce several enzyme pathways involved in the formation and development of atherosclerotic plaques. As a direct comparison, the present study examined the impact of diesel engine emissions on these pathways, and further examined the effects on vascular lesion pathology. Apolipoprotein E-null mice were simultaneously placed on a high-fat chow diet and exposed to four concentrations, plus a high concentration exposure with particulates (PM) removed by filtration, of diesel emissions for 6 h/day for 50 days. Aortas were subsequently assayed for alterations in matrix metalloproteinase-9, endothelin-1, and several other biomarkers. Diesel induced dose-related alterations in gene markers of vascular remodeling and aortic lipid peroxidation; filtration of PM did not significantly alter these vascular responses, indicating that the gaseous portion of the exhaust was a principal driver. Immunohistochemical analysis of aortic leaflet sections revealed no net increase in lesion area, but a significant decrease in lipid-rich regions and increasing trends in macrophage accumulation and collagen content, suggesting that plaques were advanced to a more fragile, potentially more vulnerable state by diesel exhaust exposure. Combined with previous studies, these results indicate that whole emissions from mobile sources may have a significant role in promoting chronic vascular disease.


Diabetes | 2009

Reductive Metabolism of AGE Precursors: A Metabolic Route for Preventing AGE Accumulation in Cardiovascular Tissue

Shahid P. Baba; Oleg A. Barski; Yonis Ahmed; Timothy E. O'Toole; Daniel J. Conklin; Aruni Bhatnagar; Sanjay Srivastava

OBJECTIVE To examine the role of aldo-keto reductases (AKRs) in the cardiovascular metabolism of the precursors of advanced glycation end products (AGEs). RESEARCH DESIGN AND METHODS Steady-state kinetic parameters of AKRs with AGE precursors were determined using recombinant proteins expressed in bacteria. Metabolism of methylglyoxal and AGE accumulation were studied in human umbilical vein endothelial cells (HUVECs) and C57 wild-type, akr1b3 (aldose reductase)-null, cardiospecific-akr1b4 (rat aldose reductase), and akr1b8 (FR-1)-transgenic mice. AGE accumulation and atherosclerotic lesions were studied 12 weeks after streptozotocin treatment of C57, akr1b3-null, and apoE- and akr1b3-apoE–null mice. RESULTS Higher levels of AGEs were generated in the cytosol than at the external surface of HUVECs cultured in high glucose, indicating that intracellular metabolism may be an important regulator of AGE accumulation and toxicity. In vitro, AKR 1A and 1B catalyzed the reduction of AGE precursors, whereas AKR1C, AKR6, and AKR7 were relatively ineffective. Highest catalytic efficiency was observed with AKR1B1. Acetol formation in methylglyoxal-treated HUVECs was prevented by the aldose reductase inhibitor sorbinil. Acetol was generated in hearts perfused with methylglyoxal, and its formation was increased in akr1b4- or akr1b8-transgenic mice. Reduction of AGE precursors was diminished in hearts from akr1b3-null mice. Diabetic akr1b3-null mice accumulated more AGEs in the plasma and the heart than wild-type mice, and deletion of akr1b3 increased AGE accumulation and atherosclerotic lesion formation in apoE-null mice. CONCLUSIONS Aldose reductase–catalyzed reduction is an important pathway in the endothelial and cardiac metabolism of AGE precursors, and it prevents AGE accumulation and atherosclerotic lesion formation.


Reviews on environmental health | 2008

Environmental risk factors for heart disease.

Timothy E. O'Toole; Daniel J. Conklin; Aruni Bhatnagar

In this review, we discuss current evidence linking environmental pollutants to cardiovascular disease (CVD). Extensive evidence indicates that environmental factors contribute to CVD risk, incidence, and severity. Migrant studies show that changes in the environment could substantially alter CVD risk in a genetically stable population. Additionally, CVD risk is affected by changes in nutritional and lifestyle choices. Recent studies in the field of environmental cardiology suggest that environmental toxins also influence CVD. Exposure to tobacco smoke is paradigmatic of such environmental risk and is strongly and positively associated with increased cardiovascular morbidity and mortality. In animal models of exposure, tobacco smoke induces endothelial dysfunction and prothrombotic responses and exacerbates atherogenesis and myocardial ischemic injury. Similar mechanism may be engaged by other pollutants or food constituents. Several large population-based studies indicate that exposure to fine or ultrafine particulate air pollution increases CVD morbidity and mortality, and the plausibility of this association is supported by data from animal studies. Exposure to other chemicals such as polyaromatic hydrocarbons, aldehydes, and metals has also been reported to elevate CVD risk by affecting atherogenesis, thrombosis, or blood pressure regulation. Maternal exposure to drugs, toxins, and infection has been linked with cardiac birth defects and premature CVD in later life. Collectively, the data support the notion that chronic environmental stress is an important determinant of CVD risk. Further work is required to assess the magnitude of this risk fully and to delineate specific mechanisms by which environmental toxins affect CVD.


Atherosclerosis | 2011

Oral exposure to acrolein exacerbates atherosclerosis in apoE-null mice

Sanjay Srivastava; Srinivas D. Sithu; Elena Vladykovskaya; Petra Haberzettl; David Hoetker; Maqsood A. Siddiqui; Daniel J. Conklin; Stanley E. D'Souza; Aruni Bhatnagar

BACKGROUND Acrolein is a dietary aldehyde that is present in high concentrations in alcoholic beverages and foods including cheese, donuts and coffee. It is also abundant in tobacco smoke, automobile exhaust and industrial waste and is generated in vivo during inflammation and oxidative stress. OBJECTIVES The goal of this study was to examine the effects of dietary acrolein on atherosclerosis. METHODS Eight-week-old male apoE-null mice were gavage-fed acrolein (2.5mg/kg/day) for 8 weeks. Atherosclerotic lesion formation and composition and plasma lipids and platelet factor 4 (PF4) levels were measured. Effects of acrolein and PF4 on endothelial cell function was measured in vitro. RESULTS Acrolein feeding increased the concentration of cholesterol in the plasma. NMR analysis of the lipoproteins showed that acrolein feeding increased the abundance of small and medium VLDL particles. Acrolein feeding also increased atherosclerotic lesion formation in the aortic valve and the aortic arch. Immunohistochemical analysis showed increased macrophage accumulation in the lesions of acrolein-fed mice. Plasma PF4 levels and accumulation of PF4 in atherosclerotic lesions was increased in the acrolein-fed mice. Incubation of endothelial cells with the plasma of acrolein-fed mice augmented transmigration of monocytic cells, which was abolished by anti-PF4 antibody treatment. CONCLUSIONS Dietary exposure to acrolein exacerbates atherosclerosis in apoE-null mice. Consumption of foods and beverages rich in unsaturated aldehydes such as acrolein may be a contributing factor to the progression of atherosclerotic lesions.


Toxicology and Applied Pharmacology | 2009

Acrolein activates matrix metalloproteinases by increasing reactive oxygen species in macrophages

Timothy E. O'Toole; Yuting Zheng; Jason Hellmann; Daniel J. Conklin; Oleg A. Barski; Aruni Bhatnagar

Acrolein is a ubiquitous component of environmental pollutants such as automobile exhaust, cigarette, wood, and coal smoke. It is also a natural constituent of several foods and is generated endogenously during inflammation or oxidation of unsaturated lipids. Because increased inflammation and episodic exposure to acrolein-rich pollutants such as traffic emissions or cigarette smoke have been linked to acute myocardial infarction, we examined the effects of acrolein on matrix metalloproteinases (MMPs), which destabilize atherosclerotic plaques. Our studies show that exposure to acrolein resulted in the secretion of MMP-9 from differentiated THP-1 macrophages. Acrolein-treatment of macrophages also led to an increase in reactive oxygen species (ROS), free intracellular calcium ([Ca2+](i)), and xanthine oxidase (XO) activity. ROS production was prevented by allopurinol, but not by rotenone or apocynin and by buffering changes in [Ca2+](I) with BAPTA-AM. The increase in MMP production was abolished by pre-treatment with the antioxidants Tiron and N-acetyl cysteine (NAC) or with the xanthine oxidase inhibitors allopurinol or oxypurinol. Finally, MMP activity was significantly stimulated in aortic sections from apoE-null mice containing advanced atherosclerotic lesions after exposure to acrolein ex vivo. These observations suggest that acrolein exposure results in MMP secretion from macrophages via a mechanism that involves an increase in [Ca2+](I), leading to xanthine oxidase activation and an increase in ROS production. ROS-dependent activation of MMPs by acrolein could destabilize atherosclerotic lesions during brief episodes of inflammation or pollutant exposure.


Circulation Research | 2016

Exposure to Fine Particulate Air Pollution Is Associated With Endothelial Injury and Systemic Inflammation

C. Arden Pope; Aruni Bhatnagar; James McCracken; Wesley Abplanalp; Daniel J. Conklin; Timothy E. O’Toole

RATIONALE Epidemiological evidence indicates that exposures to fine particulate matter air pollution (PM2.5) contribute to global burden of disease, primarily as a result of increased risk of cardiovascular morbidity and mortality. However, mechanisms by which PM2.5 exposure induces cardiovascular injury remain unclear. PM2.5-induced endothelial dysfunction and systemic inflammation have been implicated, but direct evidence is lacking. OBJECTIVE To examine whether acute exposure to PM2.5 is associated with endothelial injury and systemic inflammation. METHODS AND RESULTS Blood was collected from healthy, nonsmoking, young adults during 3 study periods that included episodes of elevated PM2.5 levels. Microparticles and immune cells in blood were measured by flow cytometry, and plasma cytokine/growth factors were measured using multiplexing laser beads. PM2.5 exposure was associated with the elevated levels of endothelial microparticles (annexin V+/CD41-/CD31+), including subtypes expressing arterial-, venous-, and lung-specific markers, but not microparticles expressing CD62+. These changes were accompanied by suppressed circulating levels of proangiogenic growth factors (EGF [epidermal growth factor], sCD40L [soluble CD40 ligand], PDGF [platelet-derived growth factor], RANTES [regulated on activation, normal T-cell-expressed and secreted], GROα [growth-regulated protein α], and VEGF [vascular endothelial growth factor]), and an increase in the levels of antiangiogenic (TNFα [tumor necrosis factor α], IP-10 [interferon γ-induced protein 10]), and proinflammatory cytokines (MCP-1 [monocyte chemoattractant protein 1], MIP-1α/β [macrophage inflammatory protein 1α/β], IL-6 [interleukin 6], and IL-1β [interleukin 1β]), and markers of endothelial adhesion (sICAM-1 [soluble intercellular adhesion molecule 1] and sVCAM-1 [soluble vascular cellular adhesion molecule 1]). PM2.5 exposure was also associated with an inflammatory response characterized by elevated levels of circulating CD14+, CD16+, CD4+, and CD8+, but not CD19+ cells. CONCLUSIONS Episodic PM2.5 exposures are associated with increased endothelial cell apoptosis, an antiangiogenic plasma profile, and elevated levels of circulating monocytes and T, but not B, lymphocytes. These changes could contribute to the pathogenic sequelae of atherogenesis and acute coronary events.

Collaboration


Dive into the Daniel J. Conklin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shahid P. Baba

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge