Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Srirang Manohar is active.

Publication


Featured researches published by Srirang Manohar.


Optics Express | 2007

Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics.

Srirang Manohar; S. Vaartjes; Johannes C.G. van Hespen; Joost M. Klaase; Frank M. van den Engh; Wiendelt Steenbergen; Ton G. van Leeuwen

Near-infrared photoacoustic images of regions-of-interest in 4 of the 5 cases of patients with symptomatic breasts reveal higher intensity regions which we attribute to vascular distribution associated with cancer. Of the 2 cases presented here, one is especially significant where benign indicators dominate in conventional radiological images, while photoacoustic images reveal vascular features suggestive of malignancy, which is corroborated by histopathology. The results show that photoacoustic imaging may have potential in visualizing certain breast cancers based on intrinsic optical absorption contrast. A future role for the approach could be in supplementing conventional breast imaging to assist detection and/or diagnosis.


Physics in Medicine and Biology | 2005

The Twente Photoacoustic Mammoscope: system overview and performance

Srirang Manohar; Alexei Kharine; Johan C. G. van Hespen; Wiendelt Steenbergen; Ton G. van Leeuwen

We present PAM, the Photoacoustic Mammoscope developed at the University of Twente, intended for initial retrospective clinical studies on subjects with breast tumours. A parallel plate geometry has been adopted and the breast will be gently compressed between a glass plate and a flat ultrasound detector matrix. Pulsed light (5 ns) from an Nd:YAG laser will impinge the breast through the glass plate in regions of interest; an appropriate number of the 590 elements of the detector matrix will be activated in succession to record photoacoustic signals. Three-dimensional image reconstruction employs a delay-and-sum beamforming algorithm. We discuss various instrumental aspects and the proposed imaging protocol. Performance studies of the ultrasound detector are presented in terms of sensitivity, frequency response and resolution. Details of the patient-instrument interface are provided. Finally some imaging results on well-characterized breast tissue phantoms with embedded tumour simulating inserts are shown.


Journal of Biomedical Optics | 2004

Photoacoustic mammography laboratory prototype: imaging of breast tissue phantoms

Srirang Manohar; Alexei Kharine; Johan C. G. van Hespen; Wiendelt Steenbergen; Ton G. van Leeuwen

We present a laboratory version of a photoacoustic mammoscope, based on a parallel plate geometry. The instrument is built around a flat high-density ultrasound detector matrix. The light source is a Q-switched Nd:YAG laser with a pulse duration of 5 ns. To test the instrument, a novel photoacoustic phantom is developed using poly(vinyl alcohol) gel, prepared by a simple procedure that imparts optical scattering suggestive of breast tissue to it without the requirement for extraneous scattering particles. Tumor simulating poly(vinyl alcohol) gel spheres appropriately dyed at the time of preparation are characterized for optical absorption coefficients. These are then embedded in the phantom to serve as tumors with absorption contrasts ranging from 2 to 7, with respect to the background. Photoacoustic studies in transmission mode are performed, by acquiring the laser-induced ultrasound signals from regions of interest in the phantom. Image reconstruction is based on a delay-and-sum beamforming algorithm. The results of these studies provide an insight into the capabilities of the prototype. Various recommendations that will guide the evolving of our laboratory prototype into a clinical version are also discussed.


Optics Express | 2012

Visualizing breast cancer using the Twente photoacoustic mammoscope: what do we learn from twelve new patient measurements?

Michelle Heijblom; D. Piras; Wenfeng Xia; J.C.G. van Hespen; Joost M. Klaase; F.M. van den Engh; A.G.J.M. van Leeuwen; Wiendelt Steenbergen; Srirang Manohar

We acquired images of breast malignancies using the Twente photoacoustic mammoscope (PAM), to obtain more information about the clinical feasibility and limitations of photoacoustic mammography. Results were compared with conventional imaging and histopathology. Ten technically acceptable measurements on patients with malignancies and two measurements on patients with cysts were performed. In the reconstructed volumes of all ten malignant lesions, a confined region with high contrast with respect to the background could be seen. In all malignant cases, the PA contrast of the abnormality was higher than the contrast on x-ray mammography. The PA contrast appeared to be independent of the mammographically estimated breast density and was absent in the case of cysts. Technological improvements to the instrument and further studies on less suspicious lesions are planned to further investigate the potential of PAM.


Nanotechnology | 2010

In vitro toxicity studies of polymer-coated gold nanorods

Raja Gopal Rayavarapu; Wilma Petersen; Liesbeth Hartsuiker; Patrick T. K. Chin; Hans Janssen; Fijs W. B. van Leeuwen; Cees Otto; Srirang Manohar; Ton G. van Leeuwen

We evaluated cellular responses to polymer-treated gold nanorods, which were synthesized using the standard wet-chemistry method that utilizes hexadecyltrimethylammonium bromide (CTAB). The nanorod dispersions were coated with either polystyrene sulfonate (PSS) or polyethylene glycol (PEG). Two sizes of nanorods were tested, with optical responses peaking at 628 and 773 nm. The cells were from mammary adenocarcinoma (SKBR3), Chinese Hamster Ovary (CHO), mouse myoblast (C2C12) and Human Leukemia (HL60) cell lines. Their mitochondrial function following exposure to the nanorods were assessed using the MTS assay. We found PEGylated particles to have superior biocompatibility compared with PSS-coated nanorods, which showed substantial cytotoxicity. Electron microscopy showed no cellular uptake of PEGylated particles compared with their PSS counterparts. PEGylated gold nanorods also exhibited better dispersion stability in the presence of cell growth medium; PSS-coated rods tended to flocculate or cluster. In the case of the PSS particles, toxicity correlated with surface area across the two sizes of nanorods studied.


Nano Letters | 2011

Light interactions with gold nanorods and cells: implications for photothermal nanotherapeutics

C. Ungureanu; Rene Kroes; Wilma Petersen; Tom A. Groothuis; Felicia Ungureanu; Hans Janssen; Fijs W. B. van Leeuwen; R.P.H. Kooyman; Srirang Manohar; Ton G. van Leeuwen

Gold nanorods (AuNR) can be tailored to possess an intense and narrow longitudinal plasmon (LP) absorption peak in the far-red to near-infrared wavelength region, where tissue is relatively transparent to light. This makes AuNRs excellent candidates as contrast agents for photoacoustic imaging, and as photothermal therapeutic agents. The favorable optical properties of AuNR which depend on the physical parameters of shape, size and plasmonic coupling effects, are required to be stable during use. We investigate the changes that are likely to occur in these physical parameters in the setting of photothermal therapeutics, and the influence that these changes have on the optical properties and the capacity to achieve target cell death. To this end we study 3 sets of interactions: pulsed light with AuNR, AuNR with cells, and pulsed light with cells incubated with AuNR. In the first situation we ascertain the threshold value of fluence required for photothermal melting or reshaping of AuNR to shorter AuNR or nanospheres, which results in drastic changes in optical properties. In the second situation when cells are exposed to antibody-conjugated AuNR, we observe using transmission electron microscopy (TEM) that the particles are closely packed and clustered inside vesicles in the cells. Using dark-field microscopy we show that plasmonic interactions between AuNRs in this situation causes blue-shifting of the LP absorption peak. As a consequence, no direct lethal damage to cells can be inflicted by laser irradiation at the LP peak. On the other hand, using irradiation at the transverse peak (TP) wavelength in the green, at comparative fluences, extensive cell death can be achieved. We attribute this behavior on the one hand to the photoreshaping of AuNR into spheres and on the other hand to clustering of AuNR inside cells. Both effects create sufficiently high optical absorption at 532 nm, which otherwise would have been present at the LP peak. We discuss implications of these finding on the application of these particles in biomedicine.


International Journal of Biomedical Imaging | 2007

Synthesis and bioconjugation of gold nanoparticles as potential molecular probes for light-based imaging techniques

Raja Gopal Rayavarapu; Wilma Petersen; C. Ungureanu; Janine N. Post; Ton G. van Leeuwen; Srirang Manohar

We have synthesized and characterized gold nanoparticles (spheres and rods) with optical extinction bands within the “optical imaging window.” The intense plasmon resonant driven absorption and scattering peaks of these nanoparticles make them suitable as contrast agents for optical imaging techniques. Further, we have conjugated these gold nanoparticles to a mouse monoclonal antibody specific to HER2 overexpressing SKBR3 breast carcinoma cells. The bioconjugation protocol uses noncovalent modes of binding based on a combination of electrostatic and hydrophobic interactions of the antibody and the gold surface. We discuss various aspects of the synthesis and bioconjugation protocols and the characterization results of the functionalized nanoparticles. Some proposed applications of these potential molecular probes in the field of biomedical imaging are also discussed.


Nanomedicine: Nanotechnology, Biology and Medicine | 2011

Blood clearance and tissue distribution of PEGylated and non-PEGylated gold nanorods after intravenous administration in rats

Daniëlle Pk Lankveld; Raja Gopal Rayavarapu; Petra Krystek; Agnes G. Oomen; Hennie W. Verharen; Ton G. van Leeuwen; Wim H. de Jong; Srirang Manohar

AIMS To develop and determine the safety of gold nanorods, whose aspect ratios can be tuned to obtain plasmon peaks between 650 and 850 nm, as contrast enhancing agents for diagnostic and therapeutic applications. MATERIALS & METHODS In this study we compared the blood clearance and tissue distribution of cetyl trimethyl ammonium bromide (CTAB)-capped and polyethylene glycol (PEG)-coated gold nanorods after intravenous injection in the tail vein of rats. The gold content in blood and various organs was measured quantitatively with inductively coupled plasma mass spectrometry. RESULTS & DISCUSSION The CTAB-capped gold nanorods were almost immediately (< 15 min) cleared from the blood circulation whereas the PEGylation of gold nanorods resulted in a prolonged blood circulation with a half-life time of 19 h and more wide spread tissue distribution. While for the CTAB-capped gold nanorods the tissue distribution was limited to liver, spleen and lung, the PEGylated gold nanorods also distributed to kidney, heart, thymus, brain and testes. PEGylation of the gold nanorods resulted in the spleen being the organ with the highest exposure, whereas for the non-PEGylated CTAB-capped gold nanorods the liver was the organ with the highest exposure, per gram of organ. CONCLUSION The PEGylation of gold nanorods resulted in a prolongation of the blood clearance and the highest organ exposure in the spleen. In view of the time frame (up to 48 h) of the observed presence in blood circulation, PEGylated gold nanorods can be considered to be promising candidates for therapeutic and diagnostic imaging purposes.


Contrast Media & Molecular Imaging | 2011

Gold nanorods as molecular contrast agents in photoacoustic imaging: the promises and the caveats

Srirang Manohar; C. Ungureanu; Ton G. van Leeuwen

Rod-shaped gold nanoparticles exhibit intense and narrow absorption peaks for light in the far-red and near-infrared wavelength regions, owing to the excitation of longitudinal plasmons. Light absorption is followed predominantly by non radiative de-excitation, and the released heat and subsequent temperature rise cause strong photoacoustic (optoacoustic) signals to be produced. This feature combined with the relative inertness of gold, and its favorable surface chemistry, which permits affinity biomolecule coupling, has seen gold nanorods (AuNR) attracting much attention as contrast agents and molecular probes for photoacoustic imaging. In this article we provide an short overview of the current status of the use of AuNR in molecular imaging using photoacoustics. We further examine the state of the art in various chemical, physical and biochemical phenomena that have implications for the future photoacoustic applications of these particles. We cover the route through fine-tuning of AuNR synthetic procedures, toxicity reduction by appropriate coatings, in vitro cellular interactions of AuNRs, attachment of targeting antibodies, in vivo fate of the particles and the effects of certain light interactions with the AuNR.


Medical Physics | 2012

Speed-of-sound compensated photoacoustic tomography for accurate imaging

Jithin Jose; Rene G. H. Willemink; Wiendelt Steenbergen; Cornelis H. Slump; Ton G. van Leeuwen; Srirang Manohar

PURPOSE In most photoacoustic (PA) tomographic reconstructions, variations in speed-of-sound (SOS) of the subject are neglected under the assumption of acoustic homogeneity. Biological tissue with spatially heterogeneous SOS cannot be accurately reconstructed under this assumption. The authors present experimental and image reconstruction methods with which 2D SOS distributions can be accurately acquired and reconstructed, and with which the SOS map can be used subsequently to reconstruct highly accurate PA tomograms. METHODS The authors begin with a 2D iterative reconstruction approach in an ultrasound transmission tomography setting, which uses ray refracted paths instead of straight ray paths to recover accurate SOS images of the subject. Subsequently, they use the SOS distribution in a new 2D iterative PA reconstruction approach, where refraction of rays originating from PA sources is accounted for in accurately retrieving the distribution of these sources. Both the SOS reconstruction and SOS-compensated PA reconstruction methods utilize the Eikonal equation to model acoustic wavefront propagation. The equation is solved using a high accuracy fast marching method. RESULTS The authors validated the new reconstruction algorithms using numerical phantoms. For experiments they utilized the recently introduced PER-PACT method which can be used to simultaneously acquire SOS and PA data from subjects. CONCLUSIONS It is first confirmed that it is important to take SOS inhomogeneities into account in high resolution PA tomography. The iterative reconstruction algorithms, that model acoustic refractive effects, in reconstructing SOS distributions, and subsequently using these distributions to correct PA tomograms, yield artifact-free highly accurate images. The approach of using the hybrid measurement method and the new reconstruction algorithms is successful in substantially improving the quality of PA images with a minimization of blurring and artifacts.

Collaboration


Dive into the Srirang Manohar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. Piras

University of Twente

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wenfeng Xia

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge